بررسی تغییر کمی و کیفی اسیدهای آلی طی فرآیند کنسروزیتون، به وسیله روش کروماتوگرافی با کارابی بالا

صد صبوری همستایی، شهرام دخاتی، غلامحسین کیارستی و رضا شکرریان

پچکیده
چهار رتم زیتون کالاماتیا، مارد، ند و نیشیمی از شهرستان رودبار تهیه شد. این ارقام با دو روش تخمیر طبیعی و تخمیر هدایت شده با Lactobacillus plantarum در دما ۲۵°C به مدت ۱۰۰ روز فرازید شدند و خصوصیات فیزیک شیمیایی محصول اندازه‌گیری شد. اندازه‌گیری اسیدهای آلی با روش HPLC انجام گرفت.

پیشترین اسفیدنه کل بررسی اسیدلاکتیک گونه ۱۰ % (حمج/وزن) در رتم فیلمی تولید شد. به طور متوسط تولیدکننده کل در تخمیر طبیعی و در تخمیر هدایت شده به ترتیب در حدود ۸۰/۰۱/۰ و ۷۸/۰/۰۰۰ гرم در ۱۰۰ میلی لیتر محلول در پرگیری زیتون‌ها یافت. بررسی وضعیت اسیدهای آلی موجود در ارقام زیتون، به وسیله روش کروماتوگرافی مواد با کارابی بالا، نشان داد که در فرایند تخمیر مقدار دو اسید آلی لاکتیک و استیک در زیتون‌ها اضافه می‌شود. از مقدار اسیداکسیک و استرکتیریک کم گردید. پیشترین اسیدلاکتیک در رتم زرد (۱/۱ %) تولید شده است. نوع تخمیر در تولید اسیدلاکتیک ایجاد تکرر، پیشترین اسیداکسیک در رتم زرد و ماری تولید شده و نیز در تخمیر هدایت شده اسیداکسیک بیشتری تولید گردید. در اسیداکسیک مالیک و سرکتیریک طی ۵۰ روز اولیه، زیتون تا حدی به شکل مایل به نوع تخمیر بستگی نداشت.

واژه‌های کلیدی: زیتون، اسیداکسیک، تخمیر طبیعی، تخمیر اسید برای، HPLC

مقدمه
زیتون یکی از مواد خوراکی مناطق نیمه‌گرم‌سیری است که با داشتن ۲۰ درصد (حدود ۳۶ هزار تن) این مقدار از زیتون کنسرووی تشکیل می‌دهد (۲). بررسی ورزش کشاورزی، بعد از سال دهم طرح طبیعی هر

1. کارشناس ارشد صنایع غذایی موسمه تحقیقات پنجم کشور، رشت
2. دانشیار صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
3. استادیار صنایع غذایی، دانشگاه کشاورزی، دانشگاه صنعتی اصفهان
برای تولید کنسرو زینتو روشن‌های آنتیوموج نهایی جاری از آماده کردن می‌باشد. برای این‌که بهتر شود، باید می‌تواند عازم‌ها و نتایج در تکثیر مستقیم بی‌مصرفی آن از نظر فیزیولوژی و فیزیولوژیک آن رعایت شود.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.

در طول دوره وسیده و می‌تواند به تنظیم می‌باشد.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.

d. زیر می‌تواند عازم‌ها و نتایج در تکثیر مستقیم بی‌مصرفی آن از نظر فیزیولوژی و فیزیولوژیک آن رعایت شود.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.

d. زیر می‌تواند عازم‌ها و نتایج در تکثیر مستقیم بی‌مصرفی آن از نظر فیزیولوژی و فیزیولوژیک آن رعایت شود.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.

d. زیر می‌تواند عازم‌ها و نتایج در تکثیر مستقیم بی‌مصرفی آن از نظر فیزیولوژی و فیزیولوژیک آن رعایت شود.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.

d. زیر می‌تواند عازم‌ها و نتایج در تکثیر مستقیم بی‌مصرفی آن از نظر فیزیولوژی و فیزیولوژیک آن رعایت شود.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.

d. زیر می‌تواند عازم‌ها و نتایج در تکثیر مستقیم بی‌مصرفی آن از نظر فیزیولوژی و فیزیولوژیک آن رعایت شود.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.

d. زیر می‌تواند عازم‌ها و نتایج در تکثیر مستقیم بی‌مصرفی آن از نظر فیزیولوژی و فیزیولوژیک آن رعایت شود.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.

d. زیر می‌تواند عازم‌ها و نتایج در تکثیر مستقیم بی‌مصرفی آن از نظر فیزیولوژی و فیزیولوژیک آن رعایت شود.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.

d. زیر می‌تواند عازم‌ها و نتایج در تکثیر مستقیم بی‌مصرفی آن از نظر فیزیولوژی و فیزیولوژیک آن رعایت شود.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.

d. زیر می‌تواند عازم‌ها و نتایج در تکثیر مستقیم بی‌مصرفی آن از نظر فیزیولوژی و فیزیولوژیک آن رعایت شود.

مورد ۱۲۳ روزنامه‌های مختلف از زینتو می‌باشد.
پرسی تغییر کمی و کیفی اسیدهای آلی طی فراپن کنسرو زیتون

کلاماتی: این رقم یک روش اصلاح شده است. میوه‌های آن درشت و گوشته است و برای کرسروسازی بکار می‌رود.

ماری: این رقم از قبیل در ایران کشت می‌شود، و ارقام اصلاح شده آن نیز به طوری که میوه‌های آن کثیف و بلند است و عمد گوشته میوه‌های آن کم و محسوس شده که همه کم است. این رقم زردسپس بوده و جزو اولین میوه‌هایی است که درد بی‌پایان می‌شود (2).

زرد: این رقم بومی ایران است. شکل میوه به صورت قلبی است که کمی کج و بینه و زردسلیم آن می‌باشد. عمد گوشته و اندازه آن متوسط است.

رقم فیسیولوژی: این رقم بومی ایران است. میوه‌های گردد و تخمری مشکل تقریباً زیستی دارد. بهتر است نیز گردد و پر گردد و بهتر است.

است. وزن میوه‌های آن زیاد بوده و لیزران گوشته آن کم است.

گوشته آن محکم بوده و درباره شیب‌های است.

دستگاه‌های مورد استفاده عبارت بود از: دستگاه‌های خط تولید کنسرو موجود در کارخانجات صنعت غذا؛ کروم‌اتوگرافی ماشین‌های یکبار بارا (HPLC) ساخت شرکت شیمزدز رایم (LC-6A)
(شامل دو پمپ با توام تولید فشاری تا و مدل دویب).

گرم‌آب یک فرم آردن دمای خاصان و کتول دمای مستن، شناساگر اسکیلوترون و من در طول محور پنجه، کتول کنندی سیستم، مجموع‌کریم‌اتوگرافی شالن، دخالت نرم‌افزار و منوپن، ستون اندازه‌گیری اسیدهای آلی و محل تزریق نمونه با لوب به صورت دو یک‌پکیل، دستگاه آب متخیم‌زایی و دستگاه سانترifuزوز 2000 دور در دقیقه مدل هنیج آلمان.

مواد مورد استفاده شامل استانداردهای اسیدهای آلی با خلوص بیش از 99% محصول مرك آلمان، سود سوزآور و روز تیبیت آنتی اکسکارکان مرك آلمان بود.

پایین‌ترین

پایین‌ترین مورد استفاده در این تحقیق عبارت بودند از:

1. Lactobacillus plantarum
2. High Performance Liquid Chromatography
سپس عمل تلخی‌دانی در سه مرحله انجام شد. در مرحله اول زیتونها در دیگ محلول سوژوران آب/آب یاری 1/2 درصد وزن به حجم به مدت دو ساعت گردوشه شدند. پس از آن زیتون‌ها سوژوران بیرون آورده شده، یک بار با آب آشامیدنی و تا زود بعد (22 ساعت) در آب معمولی تهیه‌کننده شدند. روز بعد زیتون‌ها در محلول سوژوران یک درصد وزن به حجم به مدت چهار ساعت قرار گرفتند. پس از یک آتشکی با آب، تا زود بعد در مخزن آن تهیه‌کننده شدند. در روز زیتون‌ها در سوژوران 1/2 درصد وزن به حجم به مدت شش ساعت تهیه‌کننده شدند. میزان زیتون‌های فرآوری شده، برای این منظور، نمی‌تواند در آن زمان فرآری شده زیتون‌ها به داخل گوشت زیتون نیز طی سه مرحله تلخی‌دانی کنترل می‌شود. در مرحله سوم نتوان آن به داخل گوشت زیتون‌ها کامال شده، سود سوژوران به هسته زیتون رسد و به روز جهار توسط شست زیتون‌ها با آب معمولی، قلبیت می‌شود تا آن رفع گردد. برای این منظور، نمی‌تواند در آن زمان زیتون‌ها شست شده داشته باشند تا وجود زیتون‌های سوژوران در زیتون‌ها با وسیله معرف شیمیایی فلتنالین منفی شد. معمولاً نمی‌تواند به‌صورت شست شوی یک کافی، بود. تا این مرحله فرآوری برای تمام روش‌ها پیکسان بود. این به بعد برای تولید کنسرو به دو روش اقدام گردد که هر کدام با شرایط خاص خود معرفی می‌شود. این روش‌ها شامل تخمیر طبیعی و تخمیر نهایی به شکل می‌شود.

اندازه‌گیری اسیدیت کل محلول در گنجینه زیتون با تا میلی‌لایتر محلول در گنجینه‌های 1 میلی لتر از محلول در گنجینه‌های 1 میلی لتر نرم‌ساز و سوژوران استاندارد، در حضور مصرف بروموتیوم بلوم آرژینیا شد.

HPLC

اندازه‌گیری اسیدهای آلفا زیتون با دستگاه

اندازه‌گیری اسیدهای آلفا در صندوق مرحله انجام شد:

آماده قرار گیری: قرار گیری برای اندازه‌گیری و آماده‌سازی اسیدهای آلفا موجود در دیدن، محلول رنگی اسید سولفوریک با pH 2/1 بود. این آب از صنایع تحت خلاً 5 میلی‌لایتر داده شد و آن داده شد و آن GA عمل هواگری به مدت 20 دقیقه انجام گرفت. آماده‌سازی وردنیی استون‌های تری موی بوی رای نمونه برای جلدگیری از
توصیه درصد پایین‌ترین اسیدهای آلی (7) از دریای مورد، په میلی لیتر از منوی‌های اسیدهای آلی آن قابل اندازه‌گیری شده بود، به داخل هشت عدد بالای زیر یک میلی لیتر انتقال داده شد. په میلی لیتر از هر یک از محلول‌های 1/1 درصد اسیدهای آلی سیتریکس، مالیکس، لاکتیک و استیک به مرکز از بالانسیها ضایع شد و با محلول بافر اسیدی EDTA به حجم مالیکس، شیمیا و محلول بافر اسیدی EDTA رسانده شد. سپس رسانده شد. سپس با مخلوط کردن نمونه انجام گرفته بود. په درصد بیشترین محلول اسیدهای آلی میلی لیتر از هر یک از محلول‌های 1/1 درصد، با همکاری زیست شد و سطح در هر یک از منیزیم‌های آنتیکوریتی یا منیزیم و از منیزیم یا منیزیم انجام و بصورت مشابه گرفت. عوامل مؤثر برش فراوان تأثیر می‌گدید. انجام این تحقیق با مایع میکروپلاس‌پلاستیک (ماریریز) و یا تخمیر طبیعی توسط میکروفلورزمیون، و زمان تخمیر مورد بررسی قرار گرفت. در تمام آزمایشات تازه‌یارساز و نیاز اصلی مطالعه‌ها اضافه شد و آزمایشات نکننده برای مقایسه میانگین‌های نیازمندی مختلف و توجه形成的 آنها به کار رفته طرح آماری به صورت طرح فاکتوریال در قالب طرح کاملاً تصادفی بود.

نتایج و بحث

از روش‌های تجزیه و تحلیل آماده در این تحقیق تخمین میانگین‌های به صورت تصادفی انجام گرفت. عوامل مؤثر برش فراوان تأثیر می‌گدید. انجام این تحقیق با مایع میکروپلاس‌پلاستیک (ماریریز) و یا تخمیر طبیعی توسط میکروفلورزمیون، و زمان تخمیر مورد بررسی قرار گرفت. در تمام آزمایشات تازه‌یارساز و نیاز اصلی مطالعه‌ها اضافه شد و آزمایشات نکننده برای مقایسه میانگین‌های نیازمندی مختلف و توجه形成的 آنها به کار رفته طرح آماری به صورت طرح فاکتوریال در قالب طرح کاملاً تصادفی بود.

1. Attenuation
۱۸
جدول 1. درصد بازیافت اسیدهای آلی در نمونه زیتون تهیه شده با دستگاه HPLC

<table>
<thead>
<tr>
<th>ترکیب مورد مطالعه</th>
<th>درصد بازیافت</th>
<th>میلی‌گرم اسید اضافه در نمونه</th>
<th>میلی‌گرم اسید موجود در نمونه</th>
<th>اندوزه‌گیری شده</th>
<th>میلی‌گرم اسید اضافه شده به نمونه</th>
<th>نتیجه</th>
<th>اسیدیت اضافی</th>
</tr>
</thead>
<tbody>
<tr>
<td>اسید لاکتیک</td>
<td>99/9</td>
<td>135/1</td>
<td>145/2</td>
<td>100</td>
<td>اسید لاکتیک</td>
<td></td>
<td></td>
</tr>
<tr>
<td>اسید استیک</td>
<td>99/5</td>
<td>88/5</td>
<td>100</td>
<td>اسید استیک</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اسید سنتیک</td>
<td>85/0</td>
<td>83/5</td>
<td>100</td>
<td>اسید سنتیک</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>اسید مالیک</td>
<td>95/6</td>
<td>50</td>
<td></td>
<td>اسید مالیک</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. تجزیه واریانس اثر سطوح مختلف رقم تلقیح و زمان بر میزان اسیدهای کل موجود در میوه زیتون، طی 100 روز تخمير

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>مجموع مربعات</th>
<th>میانگین مربعات</th>
<th>عدد F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم</td>
<td>1</td>
<td>33/24</td>
<td>11/08</td>
<td>272/32</td>
<td>**</td>
</tr>
<tr>
<td>تلقیح</td>
<td>1</td>
<td>22/22</td>
<td>6/59</td>
<td>138/87</td>
<td>**</td>
</tr>
<tr>
<td>زمان</td>
<td>1</td>
<td>42/42</td>
<td>14/14</td>
<td>59/09</td>
<td>**</td>
</tr>
<tr>
<td>خطای آزمایشی</td>
<td>1</td>
<td>8/81</td>
<td>0/08</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

جدول 3. تجزیه واریانس اثر سطوح مختلف رقم تلقیح و زمان بر میزان اسیدلاکتیک موجود در میوه زیتون، طی 100 روز تخمير

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>مجموع مربعات</th>
<th>میانگین مربعات</th>
<th>عدد F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>رقم</td>
<td>1</td>
<td>33/24</td>
<td>11/08</td>
<td>272/32</td>
<td>**</td>
</tr>
<tr>
<td>تلقیح</td>
<td>1</td>
<td>22/22</td>
<td>6/59</td>
<td>138/87</td>
<td>**</td>
</tr>
<tr>
<td>زمان</td>
<td>1</td>
<td>42/42</td>
<td>14/14</td>
<td>59/09</td>
<td>**</td>
</tr>
<tr>
<td>خطای آزمایشی</td>
<td>1</td>
<td>8/81</td>
<td>0/08</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

**: معنا در سطح 0.01 دار است. **: معنا در سطح 0.05 دار است.
شکل 1. منحنی‌های استاندارد اسیدلاکتیک (■)، استیک (▲)، مالیک (●) و سیتریک (◆) ۰.۵ میلی‌گرم در ۱۰۰ گرم گوشت زیتون.

شکل‌های ۵ و ۶ که به ترتیب نشان دهنده تغییرات کمی تولید اسید لاستیک در زیتون‌های تخمیری طبیعی (۶۸-۱۱۰ میلی‌گرم در ۱۰۰ گرم گوشت زیتون) و تخمیری ناجاها ۱۸۰-۱۸۰ میلی‌گرم در ۱۰۰ گرم گوشت زیتون) نسبت به تخمیری طبیعی (۷۴-۱۰۰ میلی‌گرم در ۱۰۰ گرم گوشت زیتون) تولید گردیده است. شکل‌های ۷ و ۸ ا مختلف تولید استیک اسید به نحوی است. تخمیری ناجاها به شدت تولید استیک نسبت به کلیه مولکول‌ها می‌دانند. طبیعی تمایل مولکول حمایت است. که به ترتیب و میزان زیادی اسید استیک هر دو نوع تخمیری با سرعت بالاتر، مقدار اسید استیک تولید کرده است. طبق مطالعات ماناتوار و همکاران (۱۴ و ۲۰) مولکول شک دارد از آن به ترتیب زیاد می‌رسد. تغییر اسید استیک از مقدار اسید لاستیک نسبت به اسید لاستیک در سطح خالی پایین تر است، ولی یک روند همانگونه را در طول زمان تخمیری طبیعی که در هر یک منطقه محدودیت کم می‌دارد. در این مقاله مقدار اسید استیک در اکثر زمان‌ها و میزان به طور کلی مقدار مذکور نسبت به تغییرات تغییرات اسید استیک تولید شده به ترتیب در مقدار فیشی، کالاکاماس زرد و ماری مشاهده شد.
جدول 4: تجزیه و ارایاس اثر سطوح مختلف رقم، تلفیق و زمان بر میزان اسیدستیک موجود در میوه زیتون، طی 100 روز تخمر در دمای 25 درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>مجموع مربعات</th>
<th>میانگین مربعات</th>
<th>عدد</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td>52</td>
<td>50965/5</td>
<td>9632/5</td>
<td>33/02**</td>
<td>3</td>
</tr>
<tr>
<td>رقم</td>
<td>3</td>
<td>11937/5</td>
<td>39781/5</td>
<td>136/29**</td>
<td>2</td>
</tr>
<tr>
<td>تلفیق</td>
<td>1</td>
<td>8400/0</td>
<td>8400/6</td>
<td>294/28**</td>
<td>1</td>
</tr>
<tr>
<td>زمان</td>
<td>9</td>
<td>9488/10</td>
<td>10521/2</td>
<td>101/68**</td>
<td>2</td>
</tr>
<tr>
<td>خطای آزمایشی</td>
<td>159</td>
<td>110208/6</td>
<td>1346/6</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*منی در سطح 1% درصد

جدول 5: تجزیه و ارایاس اثر سطوح مختلف رقم، تلفیق و زمان بر میزان اسیدستیک موجود در میوه زیتون، طی 100 روز تخمر در دمای 25 درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>مجموع مربعات</th>
<th>میانگین مربعات</th>
<th>عدد</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>تیمار</td>
<td>52</td>
<td>19279/1</td>
<td>37005/9</td>
<td>32/38**</td>
<td>1</td>
</tr>
<tr>
<td>رقم</td>
<td>3</td>
<td>8084/6</td>
<td>2695/6</td>
<td>25/01**</td>
<td>2</td>
</tr>
<tr>
<td>تلفیق</td>
<td>1</td>
<td>5579/5</td>
<td>5579/5</td>
<td>51/74**</td>
<td>1</td>
</tr>
<tr>
<td>زمان</td>
<td>9</td>
<td>149135/4</td>
<td>15072/6</td>
<td>153/74**</td>
<td>2</td>
</tr>
<tr>
<td>خطای آزمایشی</td>
<td>159</td>
<td>11532/5</td>
<td>107/8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*منی در سطح 1% درصد

شکل 4: تغییر اسیدهای کلی طی تخمر اجباری

(علاماً مطابق شکل 1)

شکل 3: تغییر اسیدهای کلی طی تخمر طبيعي

(علاماً مطابق شکل 1)
شکل ۸. تغییر اسیدوکیک طی تخمیر اجباری

شکل ۹. تغییر اسیدوستاتیک طی تخمیر طبیعی

شکل ۱۰. تغییر اسیدوستاتیک طی تخمیر اجباری

(علامت منحنی ها مطابق شکل ۱)
پرسی تغییر کمی و کیفی اسیدهای آلی طی فرآیند کنسرو زیتون...

داشت‌های در نظر مقایسه ارقام زینوت، با توجه به نتایج جدول ۷۷، بیشترین تغییرات در ارقام زرد و کالاماندا و در کربوه بعد، رقم ماری و بی‌شکی رقم داشتن‌های از نظر تغییر نوع تخم‌مرغ، تخم‌مرغ شاهد (اجباری) نسبت به تخم‌مرغ تغییرات بیشتر و نسبتی را در اسید سبزی‌پریک زینوت‌ها به وجود آورد. شکل‌ها ۹ و ۱۰ به ترتیب تغییرات گمی سبزی‌پریک را در ارقام زینوت در مو تغییر بی‌شکی و هم‌اکنون شده (اجباری) تا کشش میدهد و معلوم می‌تغییرات اسیدسیتریک در تخم‌مرغ مهافت تخم‌مرغ شاهد (اجباری) بوده، در حالی‌که تخم‌مرغ شاهد (اجباری) در ارقام زینوت تخم‌مرغ بی‌شکی همه به یک هدف نسبتاً آمده است (۵۷) (۵۰ تا ۱۵۰ گرم گوشت زینوت)، در حالی که در تخم‌مرغ شده (اجباری)، آخرين اسیدسیتریک (۲۰) و ۷۰۲۰ گرم گوشت زینوت (در ارقام مختلف به هم متفاوت است. طبق پژوهش مک فیتز و همکارانش (۱۹)، اسیدهای غالب زینوت اسیدسیتریک و

اسیدسیتریک ترشیش داده شده است، که ب به صورت درصد در طول تخم‌مرغ از بین رفته‌اند. اما اسید مالیک خیلی سریعتر ناپید شده، که این اسید به وسیله آنزیم مالاتئات به اسیدلیکیک و دی‌کسیدکریک تجزیه گردیده است (۱۲ و ۱۱). درینان و اسیدمانیک (۹) عضیف داشتن اسیدسیتریک ممکن است به صورت انتقال قابل تبیید به سیسی رشد، و در سیسی غیروهای متابولیسم سیسی تبدیل به دی‌کسید کریک، استات، استتین، دی‌ستیل و ۲ باترین گلایکولی (۹) اسیدسیتریک به آتشگی تا روز ۲۵ام از بین رفته است.

تغییر اسیدسیتریک اسیدسیتریک نیز جزو اسیدهای غالب موجود در میوه تنست. تابع جدا که تمام

عمول رت، تلفیق و زمان در سطح پیک درصد خطای منفی دارد. ۷ بی‌شکی تغییرات در زینوت‌های رقم

ماری آب نمکی و زرد تخم‌مرغ، کمترین تغییرات در

کالاماندا آب نمکی و فیتز آب نمکی رخ داده است. از نظر

ارقام زینوت، بی‌شکی تغییرات به ترتیب در ارقام زرد، ماری،

کالاماندا و فیتزی مشاهده شد.

در مورد نوع تخم‌مرغ، از نظر آماری در سطح پیک درصد خطای منفی دارد. ۷ بی‌شکی تغییرات در زینوت‌های رقم ماری و بی‌شکی رقم داشتن‌های
جدول 6. تجزیه و ارتباط اثر سطوح مختلف رض، تلقیح و زمان بر میزان استیمیالیک موجود در میوه زینتون، طی 100 روز تخمیر در دماهای 75 درجه سانتی‌گراد

<table>
<thead>
<tr>
<th>F عدد</th>
<th>میانگین مربوطات</th>
<th>مجموع مربوطات</th>
<th>درجه آزادی</th>
<th>منابع تغییرات</th>
</tr>
</thead>
<tbody>
<tr>
<td>77/23**</td>
<td>16438/4</td>
<td>917198/9</td>
<td>52</td>
<td>تیمار</td>
</tr>
<tr>
<td>59/22**</td>
<td>12323/5</td>
<td>20870/6</td>
<td>7</td>
<td>رقم</td>
</tr>
<tr>
<td>41/14**</td>
<td>9384/6</td>
<td>9384/6</td>
<td>1</td>
<td>تلقیح</td>
</tr>
<tr>
<td>32/21**</td>
<td>83117/8</td>
<td>78304/3</td>
<td>9</td>
<td>زمان</td>
</tr>
<tr>
<td></td>
<td>288/1</td>
<td>24407/2</td>
<td>159</td>
<td>خطیت آزمایشی</td>
</tr>
</tbody>
</table>

**: معنی‌دار در سطح 0.05 درصد

جدول 7. مقایسه میانگین تغییرات استیمیالیک در هر اثر مختلف زینتون به وسیله آزمون دانکن در سطح 0.05 درصد

<table>
<thead>
<tr>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
<th>میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>استیمیالیک</td>
<td>استیمیالیک</td>
<td>استیمیالیک</td>
<td>استیمیالیک</td>
<td>استیمیالیک</td>
<td>استیمیالیک</td>
</tr>
<tr>
<td>89/82BA</td>
<td>173/3A</td>
<td>61/47B</td>
<td>37/30B</td>
<td>1/10A</td>
<td>3/17A</td>
</tr>
<tr>
<td>59/1D</td>
<td>122/4CB</td>
<td>116/7B</td>
<td>43/49D</td>
<td>2/11B</td>
<td>1/8A</td>
</tr>
<tr>
<td>90/8BA</td>
<td>142/6CB</td>
<td>37/67D</td>
<td>363/6B</td>
<td>4/6B</td>
<td>4/29C</td>
</tr>
<tr>
<td>70/56C</td>
<td>135/5C</td>
<td>86/38C</td>
<td>362/5D</td>
<td>3/31B</td>
<td>6/20A</td>
</tr>
<tr>
<td>80/85C</td>
<td>111/5D</td>
<td>91/25D</td>
<td>53/17D</td>
<td>3/17A</td>
<td>5/32C</td>
</tr>
<tr>
<td>67/68D</td>
<td>121/8D</td>
<td>94/69C</td>
<td>631/9A</td>
<td>3/31A</td>
<td>6/31A</td>
</tr>
<tr>
<td>85/11CB</td>
<td>117/1A</td>
<td>109/1B</td>
<td>530/1B</td>
<td>3/60A</td>
<td>3/60A</td>
</tr>
<tr>
<td>98/01A</td>
<td>152/6B</td>
<td>157/1A</td>
<td>343/0D</td>
<td>1/17A</td>
<td>1/17A</td>
</tr>
</tbody>
</table>

اعداد با جدول مشابه فاقد اختلاف معنی‌دار می‌باشند.

شکل 12. تغییر استیمیالیک در تخمیر اجباری

شکل 11. تغییرات استیمیالیک در تخمیر طبیعی

(علامت منحنی‌ها مطابق شکل 1)
سنگواره

بخشی از هری انجام این تحقیق از طرف سازمان تحقیقات، آموزش و تربیت کشاورزی و بخش دیگر توسط دانشگاه کشاورزی دانشگاه صنعتی اصفهان تأمین گردیده است که به‌دین

متن بیانه استفاده

1. منبع ۵، صفحه ۱۳۷۳، ج‌را زیتون، مجله زیتون، ۱۷: ۱۴-۱۷.
2. میرمینی و آخوری‌نژاد، ۱۳۷۳، بررسی و مقایسه خواص کیفی ارگانیک زیتون به منظور تعیین ارگان مناسب جهت تولید کنسرو زیتون. برق‌که.
3. مقالات اولین کنفرانس سراسری برسی مسالی زیتون در گرگان، وزارت کشاورزی، ص ۲۳۴-۲۳۷.
4. طبیعت‌یابی، م. ۱۳۷۸، اهمیت غذایی زیتون، مجله زیتون، ۱۷: ۳۸-۴۱.