بررسی تولید رنگ خوراکی قرمز از چغندر قرمز و پایداری آن طی فرآیندها غذایی

لalie مشرف بروجنی 1 و جوادگرامت 2

چکیده

محدودیت مصرف رنگ‌های قرمز مصنوعی در مردغناصیب، سبب توجه بیشتری به تولید رنگ‌های طبیعی به عنوان افزودنی‌های مجزا گردیده است. یکی از منابع مهم تولید رنگ‌های طبیعی، رنگ‌های چغندر قرمز (Beta vulgaris L.) در فراورده‌های غذایی مورد استفاده قرار می‌گیرد. در این آزمایش تحقیقات نمونه‌های چغندر قرمز پس از عملیات اندازه‌سازی، آنزیم‌بری شد و حفره‌ها در زمان‌های مختلف ۸/۰، ۸/۲ و ۸/۴، از سویی به طور نسبی تهیه شدند. رنگ‌های ذخیره‌شده در حفره‌های مختلف به رنگ‌های تولیدی مشابهی باشند. رنگ‌های تولیدی در محصولات سرد مثل پنیر و شیرین، به عنوان مورد بررسی قرار گرفته‌اند. به‌طور عکس، می‌تواند مورد بررسی قرار گیرد. رنگ‌های طبیعی مصرفی در مواد مصرفی به صورت کاهش یافته‌شده باشد. رنگ‌های مصرفی در مواد غذایی مصرفی بود.

واژه‌های کلیدی: رنگ قرمز، چغندر قرمز، تولید رنگ، رنگ مصرفی

مقدمه

حقیقت مصرف کندنگ قبل از آنکه اطلاعی از سایر خصوصیات

1. عضو هیئت علمی، بخش صنایع غذایی، مرکز تحقیقات کشاورزی استان تهران
2. استادیار صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

3. Appearance
با پایین آن، مشخصات ظاهراً یک فراورده غذایی عمومی است که مخصوصاً در اولین بروزتودن خرددر شکست و تمیز کننده دارد. سایر خصوصیات کیفی مانند عطر، پاکت و غیر معادلی هستند که از مصرف محصول غذایی و احیاناً اس پیچ برخورد نمایند و ترجیح کردن آن مشروط می‌باشد.

می‌شود، چند جزئیات مربوط به منشأ محصول، به‌طور کلی، به‌صورت زیر در نظر گرفته می‌شود:

1. U. S. FDA (United States Food and Drug Administration), 1986
2. Colorant
3. Certified
4. Uncertified
5. National Cancer Institute
6. P-Cresidine
7. Generally Recognized As Safe (GRAS)
8. Riboh
9. Roselle
10. Cranberry

ننیا، و نیز خشکی محلک، رنگ‌پرداختی‌ها و رنگ‌پردازی‌ها و رنگ‌پردازی‌های مختلفی که در بیش از ۴۰۰ نوع مختلف پیکر، برای احیاناً برخورد نمایند، و ترجیح کردن آن مشروط می‌باشد.

می‌شود، چند جزئیات مربوط به منشأ محصول، به‌طور کلی، به‌صورت زیر در نظر گرفته می‌شود:

1. U. S. FDA (United States Food and Drug Administration), 1986
2. Colorant
3. Certified
4. Uncertified
5. National Cancer Institute
6. P-Cresidine
7. Generally Recognized As Safe (GRAS)
8. Riboh
9. Roselle
10. Cranberry

ننیا، و نیز خشکی محلک، رنگ‌پرداختی‌ها و رنگ‌پردازی‌ها و رنگ‌پردازی‌های مختلفی که در بیش از ۴۰۰ نوع مختلف پیکر، برای احیاناً برخورد نمایند، و ترجیح کردن آن مشروط می‌باشد.
بررسی تولید رنگ خوراکی قرمز از چغندر قرمز و پیشرفت آن طی فرآیندهای غذایی

امشته کردن چغندر قرمز‌گياهی است از طریق Beta vulgaris L. (استفاده با) و چغندر گیاهی (Chenopodiaceae) که گونه‌ی Beta vulgaris می‌باشد. چغندر گیاهی قرمز نسبت به گونه‌هایی که نژادی نوع واریته و قفل کش‌کسان بودند از موارد اطراف اصلاح‌های خریداری گردیدند. گیاه‌های چغندر در اندازه‌های کوچک یا قطر کمر از 3/7 سانتی‌مرد، متوسط (با قطر 3/7 3/7 سانتی‌مرد) و بزرگ (با قطر بیش از 3/7 سانتی‌مرد) انتخاب شدند. نمونه‌های انتخابی در دما و رطوبت بخش تهیه شد و دمای صفر 2 تا 3 درجه سانتی‌گراد (حدود 30 تا 40 درصد برش و دمای صفر) در داخل آن که طور تصادفی نمونه‌برداری انجام گرفت.

آزمایش 4-7 پلیمر است که به صورت دوات مخلوط ناحیه مواد محلول چربی را از سیستم آلی جدید می‌کند. و همچنین می‌تواند با اضافه مواد محلول چربی را از حلال‌های حیاتی کننده (6). تأثیر عمده این نوع رزین‌ها بر زیست‌رسی خوراکی، در زمینه‌های کشاورزی که در آن‌ها استفاده می‌شود. چغندر قرمز از روست‌های یک سنتی‌های فانوس‌پوشی، سنتی‌های یک سنتی‌های فانوس‌پوشی، و یا تخمیر عصاره بوده است. استخراج گیاه‌هایی از چغندر قرمز توسط سیستم‌های غذایی، در سال 1972 توسط وابسته‌ی پیشنهاد شد. در سال 1974 فیلیپ 3 استخراج رنگ قرمز از چغندر قرمز، از روست‌های پرس کردن و سنتی‌های یک سنتی‌های فانوس‌پوشی استفاده کرد. در سال 1984 و لی (15) استخراج با استفاده از چغندر قرمز را توسط استخراج دیفوسیونی، با استفاده از حلال و دستگاه دیفوسیون با جریان مکثتب و مداوم 3 انجام دادند. در سال 1974 و همین طور سال 1993 تخمیر عصاره چغندر قرمز توسط میکروفاگن‌سیسی هم تخمیر کنند تحت شرایط گاه‌زی استوانه‌ای پیشنهاد شد. توسط آزمایش 4-7 آزمایش (6، 7، 8). در این بررسی سمت شاه است با استفاده از یک سیستم رزینی، نگا قرمز طبیعی خوراکی برای مصارف انسانی استخراج تولید شود. در ضمن، بهترین شرایط استخراج رنگ و مطالعه‌های آپارادی آن در شرایط مختلف مورد بررسی قرار گرفته است. همچنین، به منظور بررسی امکان مصرف این رنگ در صنایع غذایی و پیشنهاد به صنایع برای تولید رنگ به صورت صنعتی، فوازی چند محصول با استفاده از رنگ قرمز تولیدی انجام شده است.

5. Macorreticular 6. Aliphatic

93
روش استخراج سرده، پس از آن زمانی که صورت‌ها، عملیات
عصاره‌گیری انجماد شد، اما در روش استخراج همگن، چندین‌ها این باعث
تودستگی خلاء‌ترین بخش‌ها صورت خلاء‌های سپرینگ در
آدنم و پلاک‌البوم به آب در حال جوش انتقال یافته، پس از
گذشت حدود 30 دقیقه که رنگ موجود بابت چندر
قرمز خارج شد، مخلوط خطای چندر و آب به روی صافی
انتقال داده شد تا حاوی رنگ از تنقلات چندر جادگرد.
پس از آن مرحله تنظیم pH و صاف کردن مطابق آنچه که در
مورده استخراج سرد انجماد شد، در مورد این عصاره نیز انجماد
گرفت.
عملیات بعدی به شرح زیر بر روی آن انجماد شد:
1. چربی رنگ از عصاره چندر قرمز
به منظور جذب چربی رنگ عصاره توسط رنگ چندر قرمز موجود در فجید کننده یک بی‌پری، با استفاده از
اختلاف سطح به ستون رنگ وارد شد. برای خروجی از
ستون 1 میلی لتر در دقیقه تنظیم گردید. عملیات
جذب تا اشباع عصاره ستون از رنگ ادامه یافت.
2. استخراج رنگ از ستون رنگ
برای چادسازی و استخراج رنگ جذب شده از ستون رنگ،
در ستون نمک از تخلیه برای مدت 15 دقیقه به
بعضی رنگویی در دقیقه عملیات شست‌شو در جهت عکس
انجام گرفت.
3. تطیفی یا چادسازی خلاء از محلول استخراج شده
به کمک دستگاه تبخیری دوار و تحت خلاف، حال از دمای
25-35 درجه سانتی‌گراد از محلول رنگ چندر گردید.
4. خشک کردن تصفیه‌ی تولید رنگ
به منظور تولید رنگ خشک کردن محلول رنگی به
دست آمده از دستگاه خشک کردن تصفیه‌ی استفاده شد.
5. تعپین ویرگ‌های رنگ تولیدی
ویگ‌های رنگ تولیدی، شامل خاکستر به روش خاکستر
در نهایت، عملیات استخراج، تا هفته‌های خوردو تولید پودر
رنگ انجماد و نزدیک رنگ در تولید چند محصول به کار برده شد.
علائم فوک به شرح زیر گرفت:
سیستم رزین مورد نظر شامل دو قیف جداینده با
جمع‌بندی یک و دو لیتر، یک ستون رنگ و دو سه‌را که
تعظیم بود قیف‌های جداینده که یکی برای فرعتان عصاره
چندر (یک لیتر) و دیگری برای فرعتان حلال و
شست‌شو ستون (دو لیتر) مورد استفاده قرار گرفت، بالاتر
از ستون نصب گردیدند. اختلاف ارتفاع باعث شد که بدن
استفاده از پمپ تخلیه محلول رنگ و حلال به داخل ستون
انجام شود. رزین آمپولیت در ستون حلال اوزار داده شد و
رژیم آب در جهت عکس از پایین به بالا وارد ستون گردید تا
رژیم رزین در جهت عکس از بالا به پایین وارد شد. رزین
شست‌شو در جهت عکس از بالا به پایین وارد می‌شد. عملیات
طبق‌پذیری رزین بر منابع اندازه‌گیری، و در نتیجه بعید
یک‌نواخت جریان حلال در رنگ در طی عملیات بعدی کمک
می‌کردند. در عمل، می‌تواند وسیعی از پایین به بالا سرعت جریان آب
به‌گونه‌ای تنظیم شد که اندازه حجم در ستون حدود 50 درصد
پایان بیشتر در استخراج رنگ از ستون رنگ
برای چادسازی و استخراج رنگ جذب شده از ستون رنگ,
در ستون نمک از تخلیه برای مدت 15 دقیقه به
بعضی رنگویی در دقیقه عملیات شست‌شو در جهت عکس
انجام گرفت.
4. Freeze Dryer
پرپسی تولید رنگ خوراکی قرومو از چندنر قرم و پایداری آن طی فرآیندهای غذایی

رنگ تولید شده بی طول زمان نگهداری آن کمک کرده و شرایط
نگهداری آن را تسره می‌کند.

اگر طیف‌های جذبی عصاره چندنر، رنگ تولید شده و
پودر رنگ نشان داده که طول موج ماکزیمم جذب برابر
عصاره چندنر دارای دو طول موج ماکزیمم جذب و برای بقیه
دارای یک طول موج ماکزیمم جذب به شرح زیر است:
\[\lambda_{\text{max}} = 278 \text{nm} \]
\[\lambda_{\text{max}} = 520 \text{nm} \]
\[\lambda_{\text{max}} = 530 \text{nm} \]

در مورد عصاره چندنر، طول موج ماکزیمم جذب 187 نانومتر
مربوط به بناتانیت و طول موج ماکزیمم جذب 350 نانومتر
مربوط به بناتانیت بود.

پس از آزمایش تعیین خلول نمونه با استفاده از
کرومئوتورگرافی صفحه نازک، ثبت شد که تغییر نگه‌داری منجر به
خلول بوده و فاقد ویژگی بناتانیت‌های می‌باشد. در حالت که
کرومئوتورگرافی صفحه نازک عصاره چندنر قرومو، دقیقاً وجود دو
رنگی بناتانیت و بناتانیت را نشان داد. بنابراین، بناتانیت در
ظرف استخراج رنگ توسط سیستم رژیمی جذب نشده است.

نتایج و بحث

مقدار خاکستر و قند رنگ تولیدی از استخراج گوم و سرد، در
مقایسه با مقدار خاکستر و قند عصاره چندنر قرم، بسیار
اندک بود. وجود مقدار بسیار کم (کمتر از ۰/۰۰۰ درصد) در
پودر رنگ تولید شده، نشان دهنده این است که قند توسط ستون
جلب نشده، و پودر رنگ تولید شده از این نظر از خلول و
پایداری خویی برخوردار است. پایین بودن میزان قند در پودر

1. Thin Layer Chromatography (TLC)
2. Single Stimulus
3. Panelist
4. Scanning
5. Willmes
6. Multiple 2 Columns
7. Multiple 4 Columns
روش سرد و گرم عصاره‌گیری شده، و نتایج حاصل نشان داد که
روش استخراج سرد از نظر بازده تولید نگ رنگ مناسبی است.
نتایج بررسی اثربخشی، تردد و زمان نگه‌داری بر پایداری نگ تولید شده از استخراج گرم و سرد در زمان‌های مختلف و در طول موج ۲۵۰ نانومتر، مطابق جداول ۱ و ۲ و شکل‌های ۱ و ۲، نشان می‌دهد که نگ تولیدی از هر دو روش، در شرایط
تاریکی و دمای چهار درجه سانتی‌گراد از پیشین باید استفاده
برخوردار است.
در مورد مقایسه اثر pH های مختلف بر پایداری نگ تولید
شده، شکل ۳ بیان می‌دهد اگر شدت جذب pH های مختلف
است و نشان می‌دهد که پیشین‌ترین شدت جذب در محدوده
۱۱ به ۱۵ می‌باشد.
نتایج آزمون‌های مانوری برای رنگ بستن در جداول ۳ و ۴
نشان داده شده است.
۳۲ = ۱۱ + ۱۰ = مجموع دو نتیجه
۳۱ = ۱۲ + ۱۹ = جمع ستون‌های پایین و همت
۳۰ = جمع کل مربعات
۲۹ = جمع کل مربعات
۲۸ = فاکتور تصحیح
۲۷ = نیمی از مجموع
۲۶ = نیمی از مجموع
۲۵ = نیمی از مجموع
۲۴ = نیمی از مجموع
۲۳ = نیمی از مجموع
۲۲ = نیمی از مجموع
۲۱ = نیمی از مجموع
۲۰ = نیمی از مجموع
۱۹ = نیمی از مجموع
۱۸ = نیمی از مجموع
۱۷ = نیمی از مجموع
۱۶ = نیمی از مجموع
۱۵ = نیمی از مجموع
۱۴ = نیمی از مجموع
۱۳ = نیمی از مجموع
۱۲ = نیمی از مجموع
۱۱ = نیمی از مجموع
۱۰ = نیمی از مجموع
۹ = نیمی از مجموع
۸ = نیمی از مجموع
۷ = نیمی از مجموع
۶ = نیمی از مجموع
۵ = نیمی از مجموع
۴ = نیمی از مجموع
۳ = نیمی از مجموع
۲ = نیمی از مجموع
۱ = نیمی از مجموع
۰ = نیمی از مجموع

با توجه به اینکه F=۴/۵۵ و به دلیل اینکه F=۴/۵۵
پایداری که در این دو فرآیند اختلاف معنی‌داری
وجود دارد، در نتیجه:
جدول 1. اثر دما، دور و زمان تغییرات بر پایداری رنگ تولیدی از استخراج گرم

<table>
<thead>
<tr>
<th>نور/ حوارت محيط</th>
<th>تاریکی/حوارت محيط</th>
<th>۴ درجه سانتی‌گراد</th>
<th>روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/379</td>
<td>0/379</td>
<td>0/379</td>
<td>1</td>
</tr>
<tr>
<td>0/377</td>
<td>0/377</td>
<td>0/345</td>
<td>4</td>
</tr>
<tr>
<td>0/242</td>
<td>0/242</td>
<td>0/156</td>
<td>7</td>
</tr>
<tr>
<td>0/181</td>
<td>0/181</td>
<td>0/111</td>
<td>10</td>
</tr>
<tr>
<td>0/176</td>
<td>0/176</td>
<td>0/068</td>
<td>13</td>
</tr>
<tr>
<td>0/172</td>
<td>0/172</td>
<td>0/232</td>
<td>16</td>
</tr>
<tr>
<td>0/171</td>
<td>0/171</td>
<td>0/212</td>
<td>19</td>
</tr>
<tr>
<td>0/176</td>
<td>0/176</td>
<td>0/137</td>
<td>22</td>
</tr>
<tr>
<td>0/113</td>
<td>0/113</td>
<td>0/113</td>
<td>25</td>
</tr>
</tbody>
</table>

جدول 2. اثر دما، دور و زمان تغییرات بر پایداری رنگ تولیدی از استخراج گرم

<table>
<thead>
<tr>
<th>نور/ حوارت محيط</th>
<th>تاریکی/حوارت محيط</th>
<th>۴ درجه سانتی‌گراد</th>
<th>روز</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/375</td>
<td>0/375</td>
<td>0/350</td>
<td>1</td>
</tr>
<tr>
<td>0/242</td>
<td>0/242</td>
<td>0/230</td>
<td>4</td>
</tr>
<tr>
<td>0/240</td>
<td>0/240</td>
<td>0/197</td>
<td>7</td>
</tr>
<tr>
<td>0/216</td>
<td>0/216</td>
<td>0/188</td>
<td>10</td>
</tr>
<tr>
<td>0/219</td>
<td>0/219</td>
<td>0/219</td>
<td>13</td>
</tr>
<tr>
<td>0/206</td>
<td>0/206</td>
<td>0/219</td>
<td>16</td>
</tr>
<tr>
<td>0/192</td>
<td>0/192</td>
<td>0/219</td>
<td>19</td>
</tr>
<tr>
<td>0/112</td>
<td>0/112</td>
<td>0/219</td>
<td>22</td>
</tr>
</tbody>
</table>

که سهم رنگ در هزینه‌های تولید محصولات مثل بستنی و شریت بخش زده مطابق محاسبات انجام شده کمتر از یک درصد می‌باشد. بنابراین، تولید و مصرف این رنگ کاملاً اقتصادی خواهد بود.

توصیه مصرف 1425/5 گرم چغندر قرمز 2/3 گرم پودر رنگ تولید گردد. به این ترتیب، از هر کیلو چغندر قرمز می‌توان حدود 7/2 گرم پودر رنگ تولید نمود. شدت رنگ حاصل از پودر رنگ تولید شده برابر است با 10/11 واحد جدب در طول موج 530 نانومتر به ازای یک گرم پودر درصد ميلي‌ليتر محلول.
شکل ۱. تأثیر نور و درجه حرارت بر پایداری رنگ تولیدی (استخراج سرد)

شکل ۲. تأثیر نور و درجه حرارت بر پایداری رنگ تولیدی (استخراج گرم)
جدول 3- پیست و دو پاسخ در مورد تابیت تیول دو رنگ بستنی

<table>
<thead>
<tr>
<th>Hedonic Scale</th>
<th>ارزش عددی (N.V.)</th>
<th>تابیت با رنگ طبیعی (N)</th>
<th>تابیت با رنگ مصنوعی (S)</th>
<th>نمونه گیری</th>
<th>F</th>
<th>S</th>
<th>SxN.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>خیلی دوست دارم</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>دوست دارم</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>بی تفاوت</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>دوست ندارم</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>اصلاً دوست ندارم</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>جمع</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>11</td>
<td>18</td>
</tr>
</tbody>
</table>

جدول 4- آنالیز واریانس ۲ داور برای نمونه بستنی

<table>
<thead>
<tr>
<th>سطح واریانس</th>
<th>درجه آزادی</th>
<th>واریانس</th>
<th>واریانس مدرجی</th>
<th>واریانس میانگین</th>
</tr>
</thead>
<tbody>
<tr>
<td>کل</td>
<td>21</td>
<td>0/32</td>
<td>0/30</td>
<td>0/30</td>
</tr>
<tr>
<td>فرمال</td>
<td>1</td>
<td>0/30</td>
<td></td>
<td>0/30</td>
</tr>
<tr>
<td>بانه مانده</td>
<td>0</td>
<td>0/30</td>
<td></td>
<td>0/30</td>
</tr>
</tbody>
</table>

شکل 3- تأثیر pH بر شدت رنگ تولیدی

هشدار: بررسی نشان دهنده رنگ خوراکی قرمز محصول چغندر قرمز و پاپیناری از طی فرآیندهای غذايي
منابع مورد استفاده

1. استاندارد شماره ۲۴۶۹. رنگ‌های مجاز خوراکی. مؤسسه استاندارد و تحقیقات صنعتی ایران.
2. پروانه، و. ۱۳۷۱. کنترل کیفی و آزمایش‌های شیمیایی مواد غذایی. انتشارات دانشگاه تهران.
3. حسینی، ز. ۱۳۷۹. روش‌های متدول در تجزیه مواد غذایی. انتشارات دانشگاه شیراز.
4. صبح، س. ۱۳۷۲. بررسی رنگ‌های قرمز مصنوعی خوراکی. مجموعه مقالات هفتمین کنگره ملی صنایع غذایی ایران، دانشگاه شهید ناصری، م. ت. و. ع. تهران. فر. ۱۳۷۲. تولید بذر سری‌جات (ترجمه). انتشارات چهار دانشگاهی مشهد.