چکیده

کمبود آهن در بیماری‌های کشاورزی دنیا به ویژه در خاک‌های آهکی گسترده است. یکی از راه‌حل‌های مقابله با کمبود آهن، کشت محصولات زراعی در محیط کشت محلول آهن است.

واژه‌های کلیدی: آهن‌کارایی، درخت‌های بلوچی، دانه‌ها، گندی‌ها، گل‌نگار. آتأیگردان

مقدمه

کمبود آهن در بیماری‌های کشاورزی به خاک‌های آهکی که در هشت‌گانه‌های بخش‌های رو به راهی‌مانند، مشاهده شده است. این تناوبی‌ها به کمبود آهن یکی از روش‌های مناسب و کارآمد برای پیشگیری از کمبود آهن عناصر است. (18) به همین دلیل مطالعه تهیه‌های زیرینی بین‌جنسی و ارقام گیاهی از لحاظ آهن-کارایی در سال‌های اخیر به طور جدی‌تر

1. به ترتیب دانشجویان سبک کارشناسی‌های روزهای دانشکده کشاورزی، دانشگاه صنعتی اصفهان
2. استادیار حرفه‌شناسی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان

* : نویسنده مکاتبات: پست الکترونیکی: hamideshghizadeh@gmail.com
مورد توجه قرار گرفت. این اشته از سال‌های پیش اخلاق زنوتیپ‌های گیاهی از لحاظ تایز به آهن شناخته شده است. (6، 7 و 9) و زنوتیپ‌های آهنی که باعث برود نشانه‌های متفاوت کمبود آهن در زنوتیپ‌های مختلف می‌شود به توان گیاهان برای محلول کردن ژد و مصرف کارکرده‌ها و مؤثرناب‌ی این عنصر مربوط است (5 و 9). به طور کلی، به زنوتیپ‌های آهنی ریزوسفور کاراتری برای جذب آهن دانسته و یا توان بالاتری در مصرف آهن جذب شده و به سیله ریشه دارد. زنوتیپ‌های آهنی کارا (Fe efficient) گفته می‌شود. ویژگی‌های آهنی سبب کارایی برخی زنوتیپ‌ها در مصرف آهن می‌شود.

یک توان بهتری ریشه‌ها در کاهش Fe۳+ به Fe۲+ از طریق تولید Fe۲+ به Fe۳+ و با آن‌زیم‌های کاشت به دنه آهن سه ظرفیتی (F8+، Reductase).

Mo، Zn، Cu، Ca، P، Al و

(3) تولید کلاته‌ها با ترکیب‌های خیلیار و یا فیل‌های شیمیایی-فیزیولوژیکی، پویا، مواد مربوط به انتقال اثرات، نمودکرپولاست، سوخت و ساز تیترزاون و توزیع و ذهاب آهن مورد توجه پرتوهای انتقال گرفته اما به طور کامل شناخته نشد است (5 و 18). آهن در تعدادی از آنزیم‌ها و عوامل کاهش دهنده در فرآیندهای اصلی مربوط به سوخت و ساز کاهش شیمیایی فیزیوستاتیک، تنفس، حفاظت سلولی، ثبت تیترزاون و پیشگیری از راه‌های دیگر به عنوان «عامل همراه» نقش بزایی می‌کند (4).

در مطالعات متعدد (2، 11، 12 و 18) ارتباطی بین غلظت آهن کل در دارایی‌های گیاهی و توان کمبود آهن مشاهده شده است. غلظت آهن کل در دارایی‌های کمبود آهن دانسته گاهی اوقات بالاتر از دارایی‌های سبز کارا شده است (6 و 15).

خب قابل ملاحظه‌ای از آهن که در بزرگ‌پایی ریشه گیاه از قبیل‌گیری می‌شود ممکن است به صورت فیتوتی‌زه‌ها (Phytotransfer) توزین‌های آهنی که باعث از خود جهت مصرف مقداری آهن در فصل بهینه‌های مختلف می‌شود به توان گیاهان برای محلول کردن ژد و مصرف کارکرده‌ها و مؤثرناب‌ی این عنصر مربوط است (5 و 9). به طور کلی، به زنوتیپ‌های آهنی ریزوسفور کاراتری برای جذب آهن دانسته و یا توان بالاتری در مصرف آهن جذب شده و به سیله ریشه دارد. زنوتیپ‌های آهنی کارا (Fe efficient) گفته می‌شود. ویژگی‌های آهنی سبب کارایی برخی زنوتیپ‌ها در مصرف آهن می‌شود.

(1) توان بهتری ریشه‌ها در کاهش Fe۳+ به Fe۲+ از طریق تولید Fe۲+ به Fe۳+ و با آن‌زیم‌های کاشت به دنه آهن سه ظرفیتی (F8+، Reductase).

Mo، Zn، Cu، Ca، P، Al و

(3) تولید کلاته‌ها با ترکیب‌های خیلیار و یا فیل‌های شیمیایی-فیزیولوژیکی، پویا، مواد مربوط به انتقال اثرات، نمودکرپولاست، سوخت و ساز تیترزاون و توزیع و ذهاب آهن مورد توجه پرتوهای انتقال گرفته اما به طور کامل شناخته نشد است (5 و 18). آهن در تعدادی از آنزیم‌ها و عوامل کاهش دهنده در فرآیندهای اصلی مربوط به سوخت و ساز کاهش شیمیایی فیزیوستاتیک، تنفس، حفاظت سلولی، ثبت تیترزاون و پیشگیری از راه‌های دیگر به عنوان «عامل همراه» نقش بزایی می‌کند (4).

در مطالعات متعدد (2، 11، 12 و 18) ارتباطی بین غلظت آهن کل در دارایی‌های گیاهی و توان کمبود آهن مشاهده شده است. غلظت آهن کل در دارایی‌های کمبود آهن دانسته گاهی اوقات بالاتر از دارایی‌های سبز کارا شده است (6 و 15).

(2) برهمکنش کمتر با سابع عنصر (مثل P و Al و

(3) تولید کلاته‌ها با ترکیب‌های خیلیار و یا فیل‌های شیمیایی-فیزیولوژیکی، پویا، مواد مربوط به انتقال اثرات، نمودکرپولاست، سوخت و ساز تیترزاون و توزیع و ذهاب آهن مورد توجه پرتوهای انتقال گرفته اما به طور کامل شناخته نشد است (5 و 18). آهن در تعدادی از آنزیم‌ها و عوامل کاهش دهنده در فرآیندهای اصلی مربوط به سوخت و ساز کاهش شیمیایی فیزیوستاتیک، تنفس، حفاظت سلولی، ثبت تیترزاون و پیشگیری از راه‌های دیگر به عنوان «عامل همراه» نقش بزایی می‌کند (4).

در مطالعات متعدد (2، 11، 12 و 18) ارتباطی بین غلظت آهن کل در دارایی‌های گیاهی و توان کمبود آهن مشاهده شده است. غلظت آهن کل در دارایی‌های کمبود آهن دانسته گاهی اوقات بالاتر از دارایی‌های سبز کارا شده است (6 و 15).

مورد توجه قرار گرفته است. این اشته از سال‌های پیش اخلاق زنوتیپ‌های گیاهی از لحاظ تایز به آهن شناخته شده است. (6، 7 و 9) و زنوتیپ‌های آهنی که باعث برود نشانه‌های متفاوت کمبود آهن در زنوتیپ‌های مختلف می‌شود به توان گیاهان برای محلول کردن ژد و مصرف کارکرده‌ها و مؤثرناب‌ی این عنصر مربوط است (5 و 9). به طور کلی، به زنوتیپ‌های آهنی ریزوسفور کاراتری برای جذب آهن دانسته و یا توان بالاتری در مصرف آهن جذب شده و به سیله ریشه دارد. زنوتیپ‌های آهنی کارا (Fe efficient) گفته می‌شود. ویژگی‌های آهنی سبب کارایی برخی زنوتیپ‌ها در مصرف آهن می‌شود.

(1) توان بهتری ریشه‌ها در کاهش Fe۳+ به Fe۲+ از طریق تولید Fe۲+ به Fe۳+ و با آن‌زیم‌های کاشت به دنه آهن سه ظرفیتی (F8+، Reductase).

Mo، Zn، Cu، Ca، P، Al و

(3) تولید کلاته‌ها با ترکیب‌های خیلیار و یا فیل‌های شیمیایی-فیزیولوژیکی، پویا، مواد مربوط به انتقال اثرات، نمودکرپولاست، سوخت و ساز تیترزاون و توزیع و ذهاب آهن مورد توجه پرتوهای انتقال گرفته اما به طور کامل شناخته نشد است (5 و 18). آهن در تعدادی از آنزیم‌ها و عوامل کاهش دهنده در فرآیندهای اصلی مربوط به سوخت و ساز کاهش شیمیایی فیزیوستاتیک، تنفس، حفاظت سلولی، ثبت تیترزاون و پیشگیری از راه‌های دیگر به عنوان «عامل همراه» نقش بزایی می‌کند (4).

در مطالعات متعدد (2، 11، 12 و 18) ارتباطی بین غلظت آهن کل در دارایی‌های گیاهی و توان کمبود آهن مشاهده شده است. غلظت آهن کل در دارایی‌های کمبود آهن دانسته گاهی اوقات بالاتر از دارایی‌های سبز کارا شده است (6 و 15).
شنیدم میزان انتقال نسبی آلن از ریشه به اندازه‌گیری برای محصولات مختلف از راه‌های ۰ اندام‌گیری شده.

= اندازه‌گیری نسبی آلن

۱۰۰x (محصول آلن/کل محتویات آلن در خیار)

برای اندازه‌گیری آلن کارایی هر یک از صفات اندام‌گیری شده از راه‌های ۲ استفاده گردید.

= آلن کارایی

/ اندازه‌گیری صفت در تیمار ۵ میکرومولار آلن

۲۰۰x (اندازه‌گیری صفت در محلول ۵۰ میکرومولار آلن)

تجزیه آماری داده‌ها با استفاده از نرم افزار SAS

تایپ و بحث

علاقه‌نما کمبود در تیمار ۵ میکرومولار آلن، علاوه درک برایدگی، زردی و خشک شدن برگ‌ها و اندازه‌ها در محصولات مختلف از خیار آلن مطالعه می‌شده‌شد. از نظر شاتل علایم کمبود آلن به ترتیب هیبرید درتز شیرین کرک ۴۰۴ هیبرید درتز دانه‌های ۷۰ بیشتر حساسیت را داشتند و پس از آنها

محصولات آفتاگردان، گلرگن و گندم قرار گرفتند (جدول ۲).

سطح نزاع

نتایج تجزیه واریانس داده‌های مربوط به سطح نزاع به محصولات زراعی مختلف از سطح احتیال ۱% معنی‌دار شد (جدول ۳). هم در شرایط کمبود و هم فاکتور آلن، بیشترین و کمترین سطح برگ به ترتیب مربوط به گلرگن رقم ۲۱۱ S-45 کرک ۴ بود.

تحمل گیاهان مورد مطالعه به کمبود آلن (آهن کارایی) از لحاظ صفت سطح برگ در جدول ۳ مقایسه شده است. کمبود
جدول 1. ترکیب شیمیایی محلول غذایی مورد استفاده

<table>
<thead>
<tr>
<th>عناصر</th>
<th>غلظت (μM)</th>
<th>غلظت (mM)</th>
<th>عناصر</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
<td>50</td>
<td>8*</td>
<td>N</td>
</tr>
<tr>
<td>Mn</td>
<td>2*</td>
<td>3*</td>
<td>K</td>
</tr>
<tr>
<td>Zn</td>
<td>2*</td>
<td>3*</td>
<td>Ca</td>
</tr>
<tr>
<td>Cu</td>
<td>5*</td>
<td>1*</td>
<td>P</td>
</tr>
<tr>
<td>Mo</td>
<td>5*</td>
<td>0.5*</td>
<td>S</td>
</tr>
<tr>
<td>B</td>
<td>5*</td>
<td>0*</td>
<td>Mg</td>
</tr>
<tr>
<td>Fe</td>
<td>5*</td>
<td>0*</td>
<td></td>
</tr>
</tbody>
</table>

1. در تیمار کمبود از غلظت 5 میکرومولار آهن استفاده شد.

جدول 2. میانگین مربعات حاصل از تجزیه واریانس (آهن کارابی) صفات اندازه‌گیری شده در محسولات زراعی مختلف

<table>
<thead>
<tr>
<th>نوع غلظت</th>
<th>درجه آزادی</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلوک</td>
<td>2</td>
<td>103</td>
<td>158</td>
<td>168</td>
<td>164</td>
<td>168</td>
<td>164</td>
<td>168</td>
<td>164</td>
<td>168</td>
<td>164</td>
<td>168</td>
</tr>
<tr>
<td>محصول</td>
<td>(5)</td>
<td>140</td>
<td>140</td>
<td>139</td>
<td>139</td>
<td>139</td>
<td>139</td>
<td>139</td>
<td>139</td>
<td>139</td>
<td>139</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td></td>
</tr>
</tbody>
</table>

اعداد 1 تا 4 به ترتیب مع ان (1) سطح بزرگ، (2) وزن خشک ریشه، (3) وزن خشک بخش هوایی، (4) غلظت عناصر آهن در بخش هوایی، (5) غلظت عنصر روی در بخش هوایی. (6) محتوای آهن بخش هوایی، (7) محتوای آهن ریشه، (8) کل محتوای آهن، (9) انتقال نسبی عناصر آهن.

- در مورد سطح بزرگ درجه آزادی 3 است.

- میانگین مربعات حاصل از تجزیه واریانس برای سطح بزرگ و عدم اختلاف معنی‌دار در سطح 0/05 و عدم اختلاف معنی‌دار هستند.

جدول 3. میانگین مقدار صفات اندازه‌گیری شده در شرایط کمبود و بدون کمبود آهن در محسولات زراعی مختلف

| وزن خشک بخش هوایی (گرم) | وزن خشک ریشه (گرم) | شدت نسبی علائم ظاهری | محصول | سطح بزرگ | سطح بزرگ (سانتیتر مربعی) | محصول | کمبود آهن | آهن کافی | کمبود آهن | آهن کافی | دزت شیرین | ذرت دانه‌ای | گلبرگ رقم 0-3 | گلبرگ رقم 3-6 | گلبرگ رقم 6-9 | آفت‌گردان | کندم دوروم |
|--------------------------|---------------------|------------------------|--------|----------|-----------------------------|--------|-----------|----------|-----------|-----------|----------|--------------|----------------|----------------|----------------|-------------|-------------|-------------|
| 0/72 | 0/24 | 0/17 | 1/7 | 0/24 | 0/24 | 1/7 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 |
| 1/32 | 0/20 | 0/11 | 2/10 | 0/20 | 0/20 | 2/10 | 0/20 | 0/20 | 0/20 | 0/20 | 0/20 | 0/20 | 0/20 | 0/20 | 0/20 | 0/20 | 0/20 |
| 2/15 | 0/49 | 0/18 | 3/12 | 0/49 | 0/49 | 3/12 | 0/49 | 0/49 | 0/49 | 0/49 | 0/49 | 0/49 | 0/49 | 0/49 | 0/49 | 0/49 | 0/49 |
| 1/55 | 0/24 | 0/8 | 1/8 | 0/24 | 0/24 | 1/8 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 | 0/24 |

1. علائم ظاهری کمبود آهن: 1. کم، 2. ملایم، 3. شدید، 4. خیلی شدید

2. مقادیر که جدایی دارای حرف مشترک هستند بر اساس آزمون جن舞ی دانک در سطح احتمال 5/ اختلاف معنی‌دار ندارند.

658
اهن سبب کاهش سطح برج هر شش گیاه زراعی مورد مطالعه شد. بیشترین کاهش سطح برج مریبوته به هیبرید 204 درت شیرین بود. در مقابل، رقم گلرگن S-3111 بیشترین آن کارایی را در بین این محصولات به خود اختصاص داد. در پاناس آزمایش، برج‌های هیبرید 204 درت شیرین در شرایط کمبود آهن به طور کامل زرد یا خشک شده و سطح برج سبز برای اندازه‌گیری وجود نداشتند در حالی که سطح برج این گیاه در نیمی از سطح برج برج‌های هیبرید در نیمی از این محصولات و در سطح سقف سطح برج به ترتیب حساسیت، هیبرید 204 درت شیرین و هیبرید 200 درت شیرین، با افزایش وزن خشک ریشه در شرایط کمبود آهن نمی‌تواند معیار مناسب برای تشخیص حساسیت با تحقیق‌های مورد مطالعه به کمبود آهن به حساب آید.

وزن خشک بخش هواپی

نتایج تجربه انجام‌شده به‌سیاهمان مربوط به وزن خشک اندام هواپی‌های مختلف در سطح احتمال 5٪ معنی‌دار شد (جدول 2). هم در شرایط کمبود و هم کافی بودن آهن، گلرگن رقم S-2411 بیشترین وزن خشک اندام هواپی را به خود اختصاص داد. کمبود آهن باید و وزن خشک اندام هواپی در کلیه گیاهان مورد مطالعه در جدول 2، اگر چه این کافی نبود.

وزن خشک ریشه

نتایج تجربه انجام‌شده به‌سیاهمان مربوط به وزن خشک ریشه محصولات زراعی مختلف از نظر آماری معنی‌دار نشد (جدول 2 و شکل ۱). با این وجود کافی هم در شرایط کمبود و هم کافی /2020/04/24/1514936428.png?resize=600,338&ssl=1
جدول 2. میانگین مقادیر و مقایسه میانگین آهون کارایی، صفات اندازه‌گیری شده در شرایط کمبود و بدون کمبود آهن

| محتوی آهن اندازه‌گیری (میلی گرم در بوته) | کارایی | کمبود آهن | نیاز کافی | میزان روزانه اندازه‌گیری (mg kg⁻¹) | کمبود آهن | نیاز کافی | مجموع
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40/8</td>
<td>49/2</td>
<td>116</td>
<td>125</td>
<td>165</td>
<td>154</td>
<td>133</td>
<td>167</td>
</tr>
<tr>
<td>77/4</td>
<td>69/3</td>
<td>125</td>
<td>89/6</td>
<td>153</td>
<td>90</td>
<td>185</td>
<td>166</td>
</tr>
<tr>
<td>66/3</td>
<td>79/8</td>
<td>94</td>
<td>20/5</td>
<td>76</td>
<td>19/15</td>
<td>312</td>
<td>90</td>
</tr>
<tr>
<td>17/5</td>
<td>17/1</td>
<td>171</td>
<td>171</td>
<td>84</td>
<td>108</td>
<td>45</td>
<td>35</td>
</tr>
<tr>
<td>35/8</td>
<td>334</td>
<td>108</td>
<td>45</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

۱. مقابله‌ی حداقل داراتی یک حرف مشترک مستند به اساس آزمون چند دامنه‌ای دانک در سطح احتمال ۵٪ اختلاف معنی‌داری ندارند.

۲. مقادیری که حداقل داراتی یک حرف مشترک مستند به اساس آزمون چند دامنه‌ای دانک در سطح احتمال ۵٪ اختلاف معنی‌داری ندارند.

محصولات به وسیله دانک در محصولات زراعی مختلف در سطح احتمال ۵٪ معنی‌دار نشان دادند. بیشترین کاهش در محصولات آهن اندام هوایی و کمترین کاهش در محصولات آهن اندام هواپی و ریشه‌های به خود اختصاص دادند.

۳. درصد مشاهده شد در حالی که همین رقم از نظر محصولات آهن ریشه‌ها با ۱۵۸ درصد بیشترین آهن کارایی را در بین این ۶۶۴
جدول ۵. میانگین مقادیر و مقایسه میانگین آهن کارایی صفات اندازه‌گیری شده در شرایط کمبود و بدون کمبود آهن در محصولات زراعی مختلف

<table>
<thead>
<tr>
<th>محصول</th>
<th>کمبود آهن کافی</th>
<th>کمبود آهن کافی</th>
<th>کمبود آهن کافی</th>
<th>کمبود آهن کافی</th>
</tr>
</thead>
<tbody>
<tr>
<td>محصول ثابت شیرین</td>
<td>۶۸/۶</td>
<td>۶۶/۹</td>
<td>۶۵/۷</td>
<td>۶۸/۵</td>
</tr>
<tr>
<td>محصول ثابت نان‌های</td>
<td>۷۱/۷</td>
<td>۷۰/۷</td>
<td>۶۵/۳</td>
<td>۶۷/۸</td>
</tr>
<tr>
<td>محصول ثابت کارثه‌سای</td>
<td>۶۶/۸</td>
<td>۶۸/۶</td>
<td>۶۷/۲</td>
<td>۶۹/۵</td>
</tr>
<tr>
<td>محصول ثابت کارثه‌سای</td>
<td>۷۱/۵</td>
<td>۷۰/۵</td>
<td>۶۸/۴</td>
<td>۷۰/۵</td>
</tr>
<tr>
<td>محصول ثابت کارثه‌سای</td>
<td>۷۵/۰</td>
<td>۷۵/۰</td>
<td>۷۵/۰</td>
<td>۷۵/۰</td>
</tr>
</tbody>
</table>

جدول ۶. همبستگی نسبی بین آهن کارایی بر خیار صفات اندازه‌گیری شده

<table>
<thead>
<tr>
<th>صف</th>
<th>وزن خشک ریشه</th>
<th>وزن خشک بخش هواپی</th>
<th>غلت محتوای آهن</th>
<th>محتوای روی بخش هواپی</th>
<th>بخش هواپی بر خش بخش هواپی</th>
<th>کل آهن نسبی آهن</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۰۰</td>
<td>۰/۳۵*</td>
<td>۰/۳۸*</td>
<td>۰/۴۰*</td>
<td>۰/۴۳*</td>
<td>۰/۴۵*</td>
<td>۰/۴۷*</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۰/۴۰*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۰/۴۱*</td>
<td>۰/۴۲*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۰/۴۲*</td>
<td>۰/۴۳*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۰/۴۳*</td>
<td>۰/۴۴*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۰/۴۴*</td>
<td>۰/۴۵*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۰/۴۵*</td>
<td>۰/۴۶*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۰/۴۶*</td>
<td>۰/۴۷*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۰/۴۷*</td>
<td>۰/۴۸*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
</tr>
<tr>
<td>۱/۰۰</td>
<td>۰/۴۸*</td>
<td>۰/۴۹*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
<td>۰/۴۱*</td>
</tr>
</tbody>
</table>

مورد مطالعه شد اگرچه باید گاهین متفاوت به کمبود آهن از لحاظ محتوای آهن کل (آهن کارایی) مقایسه بود. کمترین و بیشترین کاهش محتوای آهن کل در شرایط کمبود آهن بی و ترتیب در هریپت در ذرت شیرین ۵۰۰ و ذرت شیرین ۵۰۴ به مشاهده شد (جدول ۵). این پاسخ به نتایج مورد مطالعه از لحاظ محتوای آهن اندازه‌گیری آهن بر را به خود اختصاص داده (جدول ۵). کمبود آهن سبب کاهش محتوای آهن کل در کلیه گیاهان
بحث

مطالعات آپکشت با استفاده از محلول‌های غلظت کمتر از لحاظ پ‌ماش قدام اولیه و مهمی برای ارزیابی فاوت‌های زندگی‌گیری بین خصوص و ارقام گیاهی می‌باشد (۲۳). در این محیط آپکشت احتمال غلظت‌ریزی کم و باتون‌گری نیز از نظر اطراف و جو و در داده‌های (۲۱) نشان می‌دهد که محلول‌های کم‌مصرف به عنوان مشارکتی رول و آهن و ناپدیدن این محلول در محلول‌های غلظت کم می‌باشد است (۲۰ و ۲۲). در این آزمایش ساخت شکل زراعی مهم کشور به کمبود آهن در میان آپکشت مورد ارزیابی قرار گرفت.

این آپکشت به عنوان قدم اولیه در مقایسه گیاه آن از لحاظ تحلیل کمبود آهن بود و با توجه به پیچیدگی شیمی آهن در خاک به ویژه خاک‌های آسمی و اکتشح‌های متعدد این عنصر بین فار محلول و فاز جامد، انجام مطالعه ابزارهای آزمایشی و امکان‌ها، نظر به بهبود و افزایش انتقال داده‌شد.

نظر به بهبود و افزایش انتقال داده‌شد.

لازم برای تولید عملکرد اقتصادی و زراعی یک محلول، میزان کاهش آن کافی به عنوان شاخص اصلی ارزیابی تعیین می‌شود. زنده‌مانده کمبود مطالعه به کمبود آهن در نظر گرفته شد. در واقع آهن- کارای بر اساس وزن خشک اندام هواپی از عنوان معیار تحلیل گیاهان به کمبود آهن مورد نظر بود و با پاسخ گیاه از لحاظ سایر صفات به کمبود آهن (نیژین) شده به شکل آهن- کارایی هر یک از صفات) با آن مورد ارزیابی قرار گرفت.

پس از ثبت نتایج این آزمایش اختلاف معنی‌داری بین گیاهان مورد مطالعه از لحاظ رضایت به تنش کمبود آهن مشاهده شد.

نتیجه (جدول ۲). در واقع کاهش و یا افزایش محتوای آهن کل در شرایط کمبود آهن نمی‌تواند معیار مناسبی برای تشخیص حساسیت یا تحمیل زنده‌مانده مورد مطالعه به کمبود آهن به حساب آید.

انتقال نسبی آهن از ریشه به اندام هواپی

از لحاظ انتقال نسبی آهن از ریشه به اندام هواپی نیز در بین محصولات زراعی اختلاف معنی‌داری در سطح اختلال/۱ مشاهده شد (جدول ۲). در شرایط کمبود آهن، گندم دوروم و ذرت دانه‌ای ۵۰۰ تا ترکیب کم‌ترین و بیشترین مقدار آهن روی ریشه به اندام هواپی انتقال داده‌اند.

کمبود آهن سیب کاهش معنی‌دار انتقال آهن به اندام هواپی در کهی‌زینتسپت‌های مورد مطالعه شد. پس از دو سال که به نوع کیسه‌سپار متفاوت بود (جدول ۱)، کم‌ترین (آهن- کارایی ۷۵) (درصد) و بیشترین (آهن- کارایی ۹۳ درصد) کاهش انتقال آهن به اندام هواپی در شرایط کمبود، به ترتیب در هریدد ۵۰۰ ذرت دانه‌ای و گندم دوروم رقم شوکا مشاهده شد. پس این مقدار نسبی انتقال آهن از ریشه به اندام هواپی به آهن- کارایی زنده‌مانده مورد مطالعه از لحاظ وزن خشک اندام هواپی هم‌بستگی منفی و معنی‌داری (در سطح ۱ درصد) مشاهده شد (جدول ۲). در واقع ارقام درصدی در برابر کمبود آهن نسبت کم‌تری از آهن جذب شده توسط ریشه را به اندام هواپی خود انتقال داده‌اند.

غلظت روي بخش هواپی

با توجه به تعداد نخجیه و اریانس داده هری مربوط به غلظت روي، بین محصولات زراعی مورد مطالعه از نظر آزمایش اختلاف معنی‌داری مشاهده شد (جدول ۲). هم در شرایط کمبود و هم در حضور مقدار کافی آهن در محیط، بیشترین غلظت روي در اندام هواپی مربوط به ذرت دانه‌ای ۵۰ بود (جدول ۲). پاسخ گیاهان مختلف به کمبود آهن از لحاظ غلظت روي اندام هواپی متفاوت بود اگرچه پاسخ آهن- کارایی بر اساس وزن خشک
اختلاف زنونی بین برخی جنس‌ها و ارقام گیاهان زراعی نظیر گندم دوروم و نان، جو دورس و ذرت از لحاظ تحلیل به کمک علوم انرژی و تغذیه آزمایش آزمایشی حساسیت بیشتر از گیاه کلپ بیشینی است (1، 18 و 21). این مشاهده نشان داد که این آزمایش در یک محیط کشت منحصر به فرد و بدون حضور خاک (آزمایش) و در یک دوره زمانی کوتاه منتقل شده است. این در نتیجه این آزمایش به فعالیت این عناصر در محلول گلیکال تیمار کمک تولید و مرحله شرک کیفی در زمان برداشت بستگی دارد (16). مدت زمان مناسب برای انجام آزمایش هر رشد حدود سه تا چهار هفته بوده و اغلب مطالعات آهن و رژیم-زاویه در محیط‌های آزمایش در مطالعه بی‌بی‌پی گیاه یک گونه به سبب خشک شدن ناشی از کمبوسیون آهن، تأخیر رشد و از پن جفت برخی گیاهان، مناسب بوده و قادر به افزایش توان مصرف آهن به طور کلی می‌توان بیان داشت که با نوع بیش از دو سه‌میلی‌متریک کمبوسیون مورد استفاده در محیط‌های آزمایش و در محصولات زراعی مورد مطالعه، غلظت و محیط‌های آهن در کل گیاه، به‌بخشی که به این نسبت به کمبوسیون آهن ندارد (جدول 4). از نظر وزن خشک ریشه و وزن خشک بخش هموپروتئینی ذرات نسبت به کمبوسیون آهن در بین این محلول‌های حساس تر بودند و در بیان آزمایش گیاهان بی‌بی‌پی گیاه یک گونه به خصوص هموپروتئین (34 درصد افزایش) در این شرایط بوده. از نظر فیزیولوژی، افزایش میزان ذرت به سمت کمبوسیون C4 مورد مطالعه در این آزمایش کمبود مایع مصرف شده در مورد نشانه‌های سلول‌های مزیتی و غلاف آوندی (رودن) بستگی (Assimilation) کمین و مقاوم کلروفیل بیشتر در سیستم کمبوسیون C4 نسبت به سیستم

منابع مورد استفاده
1. احمد، ع. و. ع. و. س. و. س. 1380، فیزیولوژی گیاهان زراعی (ترجمه)، انتشارات دانشگاه تهران.
2. خوشگنارمانه، ا. 1385، راهکارهای بهبود کیفیت گندم تولیدی در استان قم به منظور بهبود سلامت افراد جامعه، گزارش نهایی.
سازمان مدیریت و برنامه‌ریزی استان کم. ملکوتی، م. ج. و. م. طهراهان. 1384. نتیجه‌ی افزایش اثر معدن‌های بهبود کیفیت محصولات کشاورزی "عناصر خرد با تأثیر کلان". انتشارات دانشگاه تربیت مدرس، تهران.