استفاده از مدل کامپیوتری شبیه‌سازی رشد ذرت (MSM) برای مدیریت آبیاری و کود نیتروژن

علی نهضتی باقلمه، شاهرخ زند پارسا وعلی رضا سپاسخوا

(تاریخ تیتر: 11/12/1387)

چکیده
مدیریت آب و کود نیتروژن محصولات کشاورزی به دلیل کمبود منابع موجود و مشکلات زیست محیطی باید به‌ویژه در سال‌های اخیر استفاده از مدل‌های کامپیوتری رشد گیاهان نشان می‌دهد. در این پژوهش مدل جهت بهینه‌سازی آب و کود نیتروژن در شرایط حداکثر محصول ذرت و حداکثر سود شرایط محیطی ذرت و آب برای استفاده از مدل کامپیوتری رشد ذرت در دور آبیاری گل‌گل روز و بودن بارش در فصل رشد برآورد شد. با اجرای مدل، عملکرد ذرت (Maize Simulation Model) MSM در 25 مقدار فصل آب از 0 تا 5000 میلی‌متر و 24 مقدار کود نیتروژن از صفر تا 240 کیلوگرم نیتروژن خالص در هر هکتار شبیه‌سازی شد. آب آبیاری مناسب با تعریف همگنی توسعه شد و اضافه نمودن 50% کود نیتروژن به ترتیب در 19 و 50 روز بعد از کاشت در نظر گرفته شد. با محاسبه هزینه‌های عملیات زراعی و قیمت‌های رایج بازار در استان قارس مقدار بهینه آب و نیتروژن مصرفی تعیین گردید. در شرایط قیمت‌های رایج آب و کود نیتروژن و هزینه‌های رایج کشاورزی برای تویید محصول ذرت (88 تومانی در هر متر مکعب آب و 1492 تومانی بر کیلوگرم نیتروژن)، مقدار بهینه آب برای شرایط حداکثر محصول برای 3730 میلی‌متر و برای حداکثر سود در شرایط محیطی ذرت و حداکثر آب برای 4234 میلی‌متر محاسبه گردید. همچنین مقدار بهینه کود نیتروژن با توجه به مقادیر نیتروژن و آمونیک خام در موقعیت کاشت به ترتیب 14 و 21 کیلوگرم نیتروژن خالص در هکتاری در 20 و 50 متری خاک. برای شرایط حداکثر محصول و حداکثر سود در شرایط محیطی ذرت و حداکثر آب، به دلیل قیمت 200 تومانی بر کیلوگرم در هکتار تعیین گردید. با قیمت آب و نیتروژن به مبلغ 0 تومانی بر متر مکعب و 3300 ریال بر کیلوگرم نیتروژن مصرفی، مقدار بهینه آب در فصل رشد برای شرایط محیطی ذرت و حداکثر آب به ترتیب 199 و 272 میلی‌متر و مقدار بهینه نیتروژن به ترتیب 120 و 210 کیلوگرم نیتروژن در هکتار محاسبه شد.

واژه‌های کلیدی: آب، بهینه، ذرت، مدل MSM، نیتروژن

1. به ترتیب دانشجو سایر کارشناسی ارشد، استادیار و استاد آبیاری، دانشکده کشاورزی، دانشگاه شیراز
2. zandparsa@yahoo.com

مصطلح مکانی: پست الکترونیکی: *
در نتیجه آن مقایسه بیشتری از نیتروژن آبی‌شیمی شده و عملکرد محصول کاهش مشاهده گردیده است. این نتایج با نتایج آزمایش‌های دیگر مطابقت دارد.

الگویی که در شرایط مزرعه بهبود آب و کود برای کشاورزان می‌باشد، از اهداف کاربرد مقدار بهینه آب از آب‌های مختلف، بهبود حداکثر سود و نیز کاهش مقدار نفوذ عمقی و مدیریت مصرفی در شرایط شورش اشاره کرد (6). اینگونه رواج را جهت تعیین مقدار بهینه آب ایلای بسیار حداکثر شدن محصول تولیدی و در آدام خالص کشاورزی ارائه داد اگلیش و جیمز (5) و اگلیش و راجا (6) مقادیر مختلف آب آیلای را برای گیاهان مختلف تعیین کردند.

هنگامی که نیتروژن کلیه در نگهداری گیاهان غلبه مقدار زیادی مورد نیاز بوده و در اغلب مواد کمیاب آن مشاهده می‌گردد، به همین دلیل مدیریت مناسب نیتروژن در مزرعه و کاربرد بهینه کود نیتروژن در مزرعه بسیار اهمیت دارد. بهنموند، نیتروژن کاهش که از اجزای اولیه و اسید تولیدکننده بوده و هنگامی که یک دارا کود نیتروژن باشد، رشد و عملکرد آن کاهش می‌باید. بنگ و نی (10) به این که آب در مناطق خشک و نیمه ششک محصول کاهش اصلی تولیدات کشاورزی است. از طرف دیگر کمیاب آب علائم بر این که به عنوان عامل محتمل اصلی و عوامل دیگر تأثیر نیاز به تولید عوامل بهتر است. انتقال دهنده‌های ماده شیمیایی و اندیشه به آب‌های زیرزمینی و ایجاد آلودگی آهسته، بررسی تحقیقات صورت گرفته توسط کو (12) نیتروژن به دلیل حل‌یافتن بازه در آب و امکان ابسته آن به عنوان یکی از منابع آلودگی محیط زیست مطرح بوده و همین‌چنین کود نیتروژن به خصوص در خاک‌هایی که رطوبت بسیار بالا توسط نیتروژن‌ها در دین رفته، راندها کاربرد کود نیتروژن کاهش و تبدیل به موجب N/O لیمیت برخی از آن مقدارهای کاسته می‌باشد. نیتروژن کاهشی و تبدیلی را برای که که CERES مدل خورشیدی و باراده مصرف انرژی شبیه‌پیشین می‌گردد. در این مدل خشک تولیدی مستقیماً از می‌گردد. در این
مدل اجرای گیاه با استفاده از ماکسیمیال سیسی پاس می‌گردد.
مدل Maize Simulation Model (MSM) مدل ماکسیمیال سیسی پاس می‌گردد.

مدل Hybrid-maize مدل Hybrid-maize مدل ماکسیمیال سیسی پاس می‌گردد.

CERES رشد ساقه و عملکرد و بر شدن دانه را می‌پذیرد. مدل Hybrid-maize تخمین وزه می‌شود. در این مدل فتو سنگ تخمین شده مدل Hybrid-maize دارای (۱۹) مدل Maize Simulation (MSM) را ارائه کرده‌اند. در این مدل اسم MSM است. این مدل Hybrid Maize می‌گردد.

عوامل محصولات در پیشینی محصول ذرت در نظر گرفته شده است. این مدل Hybrid می‌گردد. این مدل با استفاده از نتایج تابیده شده به برگهای گیاه شیب‌سازی می‌کنند. این مدل با استفاده از ماکسیمیال سیسی پاس از کشوری دانشگاه شیراز در سال‌های ۱۳۸۲ و ۱۳۸۳ برای گندینی تیره تری بودن جدید شده بر مبنای تحقیقی داشته‌اند. ماکسیمیال محصول از کشوری دانشگاه دانشکده کشاورزی می‌باشد.

هدف از این پژوهش تخمین مقدار بهینه آمپاره و کود نیتروزون در شرایط حداکثر محصول توپیلدی و حداکثر سود در شرایط محدودیت زمین و آب براساس تابی

اچرای مدال در شرایط آب و هوا‌های بهتر شکل سیستم می‌باشد.

مواد و روش‌ها

MSM تشخیص مدال

جمه‌سیسی پاسی (Maize Simulation Model) MSM مدل محصولات در پیشینی محصول ذرت SC704 به زبان Quick Basic مدل ماکسیمیال سیسی پاس می‌گردد.

 risky یکی از این مدای P بر پایه‌ای اصلی و هنری زیربازانه می‌باشد. زیربازانه‌های مدل عبارتند از: ۱- جریان آب خاک ۲- جریان گرم خاک ۳- حرکت نیتروزون در خاک ۴- تحلیل تغییر شکل‌ها نیتروزون ۵- جدید نیتروزون توپیلدی گیاه ۶- تخمین نیتروزون تحقیق واقعی

توابع درآمدهزینه

بر اساس جمع هزینه‌های آماده‌سازی زمین، کاشت و برداشت، هزینه‌های مدریت مزرعه، هزینه‌های کاربرد آب و نیتروزون و غیره تعیین می‌گردد. درآمد و نتایج (X) (Y) و نیتروزون کاربردی (N) و سطح آب‌زایی (A) برای کشت بستگی دارد:

\[
I = A \times i(W, N)
\]

\[
i(W, N) = P \times Y(W, N) - C(W, N)
\]

که در آنها i(W, N) درآمد خالص در واحد سطح، P مجموع کل درآمد خالص، X نتایج محصول توپیلدی حسب ریال بر واحد وزن و Y مقدار محصول در واحد سطح می‌باشد.

هنگامی که منابع آب محدود باشند، سطح کشت تحت آب‌زایی محدود می‌باشد.
در استان فارس در سال 1385 و 1386 مقدار درآمد خالص (N) و یک تیترولن (W) برای مقادیر مختلف آب آبیاری (W) و کود نیتروژن (N) مطابق معادله 2 محاسبه گردید.

مقدار بهینه آب و تیترولن در حالت محصولی زمین (NL, WL) بر اساس میزان آب و تیترولن کاربردی به دست می‌آید که منجر به کسب حداکثر درآمد خالص در واحد سطح زمین می‌گردد. در حالت محصولی آب، حجم محدودی برای آب (W) مشابه (m-ha) مثل برای حجم آب در حداکثر تولید در واحد سطح (W) در نظر گرفته می‌شود و مقدار درآمد خالص نیز از تفاصل زیر به دست آمده در این معنی محدود محاسبه می‌گردد. در این حالت، ساختار زیر کشت از معادله زیر محاسبه می‌شود:

\[
A = \frac{W_1}{W}
\]

که در آن W مقدار کاربردی حسب متر و کل کل W قرار می‌گیرد آب موجود (m-ha) می‌باشد. مقدار بهینه آب و تیترولن در این حالت در میزان حاصل برای آب و تیترولن که مقدار حداکثر درآمد خالص را در واحد حجم آب تبیجه می‌دهد.

نتایج و بحث

تخمین محصول

در شکل 1 مقادیر انتزاعی شده و تخمین زده شده عملکرد دانه در نتیجه 40 مدل در مقادیر مختلف کود تیترولن و مقادیر آب آبیاری مقایسه شده‌اند. مدل MSM مقادیر عملکرد دانه را به صورت مطلوب بیشتر می‌نماید.

برای اجرای مدل، مقدار و تعداد آب آبیاری را به مقدار تخمینی در 25 تیترول آب ذخیره 3750 میلی متر و 44 تیترول کود تیترولن از صفر تا 45 کیلوگرم تیترولن خالص در هکتار تخمین زده شد. آب آبیاری بدون بارش و متاسب با تبخیر تحریک به دو روز و روز توزیع شد و ضخامت تعرق در 3/2 کف کود نیتروژن به ترتیب در 15 و 35 روز بعد از کاشت در نظر گرفته شد. مقدار اولیه انتزاعی شده نترسی و آمونیوم موجود تا عمق 60 سانتی متر خاک به ترتیب برابر 10 و 21 کیلوگرم در هکتار نیتروژن خالص می‌باشد. بر این اساس در 110 میلی‌متر بارش مقدار مختلف آب و تیترولن عملکرد دانه در هکتار شبیه‌سازی شد. با محاسبه هزینه‌های عملیات زراعی و بر اساس قیمت‌های رایح
استفاده از مدل کامپیوتری شبیه سازی رشد درت (MSM) برای مدیریت...

![نمودار 1: مقایه مقدار شبیه‌سازی شده توسط مدل و اندازه‌گیری شده]

![نمودار 2: نتایج عملکرد دانه درت (تن بر هکتار) حاصل از شبیه‌سازی مدل در مقادیر متفاوت آب آبیاری و کاربرد نیتروژن]

571
درآمد خالص در شرایط محدودیت زمین در شکل 3 نشان داده شده است. در مقدار کمتر یا بیشتر آب از این حد، درآمد خالص کاهش نشان می‌دهد ولی افزایش آب کد نیتروژن مقدار آن افزایش می‌یابد. حداکثر حاصل در هر سال سواد در 1400 میلی‌متر می‌باشد که در حداکثر مقدار آبی‌ایرو و نیتروژن (Wm, Wn) به ترتیب 1356 میلی‌متر و 250 کیلوگرم در هر متر زمین زده می‌شود. نیاز آب ذرت در منطقه برای 1000 میلی‌متر می‌باشد که به مقدار آبی‌ایرو 1346 میلی‌متر در اثر پیوسته، بخشی از نیتروژن از محیط ریشه شسته می‌شود که به علت مصرف زیاد کود این امر خالص در جذب نیتروژن توسط ریشه گیاه وارد نمی‌آورد.

تخمین هزینه

قیمت‌ها و هزینه‌های رایج در سال 1385 مورد استفاده در این پژوهش، به صورت زیر می‌باشند:

قیمت هر کیلوگرم گرم ذرت دانه‌ای (P) برای 15/55 ریال، قیمت هر کیلوگرم نیتروژن مصرفی (Cn) برای 1946 ریال، هزینه هر کیلوگرم ساعت برق مصرفی در کشاورزی برای محاسبه قیمت آب 1343 ریال، هزینه کارگر برای 17800 ریال در ساعت و هزینه اجاره زمین برای فصل کشت در دانه‌ای به میزان 600 ریال برای یک هکتار بر اساس بروزهای محلی تعیین شد. هزینه ثابت تولید محصول شامل آمدسازی زمین، کاشت، داشت، بدرورد و هزینه اجاره زمین به میزان 10/0150 ریال بر هکتار در محاسبات مربوط به درآمد منظور گردید.

حرکت قیمت آب و نیتروژن در شرایط محدودیت زمین

مقدار بهینه آب و نیتروژن در شرایط محدودیت زمین (Nf, Wf) براساس حداکثر درآمد خالص در یک هکتار زمین و بر اساس قیمت‌های رایج برای آب و نیتروژن، به ترتیب 1000 ریال بر متر مکعب آب و 3500 کیلوگرم نیتروژن خالص در هکتار حاصل می‌شود. نیاز به مقدار مختلف کود نیتروژن برای حصول حداکثر

572
استفاده از مدل کامپیوتری شبیه‌سازی رشد ذرت (MSM) برای مدیریت...

شکل ۳: مقادیر درآمد خالص (ریال) به دست آمده در هکتار برای قیمت‌های رایج منطقه در مقادیر مختلف آب آبیاری و نیتروژن کاربردی در شرایط محدودیت زمین

$$A = \frac{W_T}{W_w} \times \text{ha}$$

شکل ۴: مقادیر درآمد خالص (ریال) به دست آمده در مقادیر مختلف متفاوت آب آبیاری و کود نیتروژن کاربردی در شرایط محدودیت آب

صد ۷۳
مقدار بهینه آب (NL) و تیترزن (WL) با اعمال هزینه‌های 88 و 1000 ریال بر متر مکعب برای آب آبیاری در فماهی‌های مختلف تیترزن در شرایط محدودیت زمین و مقدار بهینه آب (NL) و تیترزن (WL) در رابطه با فماهی آب و تیترزن در شکل 6 نشان داده شده است. هنگامی که فماهی واحده تیترزن کاربردی (Cw) افزایش می‌یابد، به دنبال جذب Ww ریال بر کیلوگرم تیترزن توسط گیاه در رطوبت‌های بالاتر، مقدار افزایش و مقدار در شرایط محدودیت آب به فماهی آب بستگی ندارد (18). هنگامی که مقدار 3000 برابر Cw به ترتیب Ww و Nw به ریال بر کیلوگرم تیترزن گردیده، مقدار بهینه 847 میلی‌متر آب و 210 کیلوگرم تیترزن در هکتار خواهد شد.

در مقدار آب آبیاری برابر 156 میلی‌متر، با کاربرد مقدار 100 کیلوگرم تیترزن در هکتار عملکرد دانه 102/99 تن در هکتار را با کاربرد 450 کیلوگرم تیترزن در هکتار عملکرد دانه 102/64 تن در هکتار می‌رسد. 41/4 هم‌خواني دارد.

بر اساس فماهی‌های رایج فعلی، مقدار بهینه آب آبیاری در شرایط محدودیت آب (Ww) برابر 847 میلی‌متر تعیین گردید که نسبت به مقدار بهینه آن در شرایط حداکثر تولید محصول زیست محیطی که شامل آلودگی هوا و تخلیه ناپایان از N2O توسط گاز حلال از پیشنهادات آب‌های زیرزمینی ناشی از آبشیبی نیترات در نظر گرفته شود، مقدار بهینه کاربرد تیترزن (Nw) و WL که در دیل پایان دولتش (که فماهی هر کیلوگرم تیترزن خاکسازی 1966 ریال می‌باشد، کشاورزان به دلیل تأثیر کاربرد تیترزن در عملکرد، اقدام به صرف بیش از نیاز برای کشت کرده می‌کنند. این مقدار در منطقه مرودشت استان فارس به 175 کیلوگرم تیترزن در هکتار نیز مرسد که مقدار زیادی از آن در خاک بانی مانده و یا از طریق آبشیبی به آب‌های زیرزمینی اضافه می‌گردد. همان‌طور که در شکل 6-الف نشان داده شده است، در شرایط محدودیت آب با افزایش فماهی تیترزن مقدار بهینه آب آبیاری افزایش می‌یابد. این نتیجه با نتایج لیبانو و بارتریومو (8) هم‌خواني دارد.

باید این دست اندازه‌گیری و گزارش شده در این پژوهش (550 کیلوگرم تیترزن در هکتار) می‌باشد. با این وجود در صورتی که هزینه آلودگی
استفاده از مدل کامپیوتری شبیه‌سازی رشد ذرت (MSM) برای مدیریت...

شکل ۵. مقادیر بیشینه آب آپارایی (Wm) و نیتروژن (Nn) در رابطه با قیمت‌های آب و
نیتروژن در شرایط محدودیت آب

با توجه به شکل ۵، مقادیر بهینه آپارایی در شرایط محدودیت زمین نسبت به مقادیر آپارایی تقریباً تابیت بوده است. در شکل ۸ نیز مشاهده می‌گردد که مقادیر بهینه آپارایی در شرایط محدودیت آب نسبت به مقادیر آپارایی ثابت و مستقل از قیمت واحد آب مباشده با کاهش میزان آپارایی از حد ۶/۰ متر به دلیل کاهش سیاسار زیرا که عملکرد کشاورز با ضرر زیادی مواجه خواهد شد و با افزایش مصرف آب از حدی به بالاتری به عمل افتاواز هزینه آب و زیاد نشدن عملکرد مناسب در آن کشاورز ضرر می‌کند.

یکی از انواع می‌باشد (۱۸) براساس تابع تولید حاصل از کشت درخت تحت آپارایی بارانی مقادیر بهینه آب و نیتروژن است. در شرایط محدودیت زمین و محدودیت آب به ترتیب برای ۱۰۰۰، ۹۹۰ و ۸۴۰ میلی‌متر و مقادیر بهینه نیتروژن به ترتیب برای ۱۹۳ و ۱۴۵ کیلوگرم بر هکتار با عمق ۶/۰ متری نیاز و ۱۹۳ کیلوگرم بر هکتار با عمق ۶/۰ متری نیاز برابری شرایط ذکر شده به ترتیب ۲۱۱، ۲۱۱ و ۲۱۱ کیلوگرم

درآمد خالص در شرایط محدودیت زمین و آب

شکل ۶ و ۷ مقادیر درآمد خالص از رابطه با مقدار فصلی آب آپارایی و قیمت‌های متفاوت آب در مقادیر ثابت کود نیتروژن به برابر با ۴۰۰ (۱) (kgs-۱) به ترتیب در شرایط محدودیت زمین و آب ۵۰۰۰

نشان می‌دهند.

۵۷۵
شکل 7. مقادیر درآمد خالص در رابطه با مقادیر متقابل فصلی آب آبیاری و کیفیت متقابل آن و مقدار کود نیترژنی ۵۰۰ کیلوگرم در هكتار با قیمت ۵۰۰۰ ریال بر کیلوگرم در شرایط محدودیت زمین

شکل 8. مقادیر درآمد خالص در رابطه با مقادیر متقابل فصلی آب آبیاری و کیفیت متقابل آن و مقدار کود نیترژنی ۵۰۰ کیلوگرم در هکتار با قیمت ۵۰۰۰ ریال بر کیلوگرم در شرایط محدودیت آب
جدول 1. مقادیر درصد افزایش قیمت‌ها و هزینه‌های سال 1385 نسبت به سال 1386

| هزینه کل | هزینه کارگر | اجاره زمین | قیمت کود | قیمت داره تولیدی | دسته
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>265</td>
<td>14</td>
<td>36</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. مقادیر پهنای آب و نیتروژن، عملکرد و درصد خالص بر اساس قیمت‌ها و هزینه‌های سال‌های 1385 و 1386

<table>
<thead>
<tr>
<th>شرایط</th>
<th>عملکرد</th>
<th>افزایش سطح</th>
<th>نیتروژن</th>
<th>درصد خالص</th>
<th>درصد خالص در داده‌های انجامده</th>
<th>درصد خالص در داده‌های انجامده</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب روه</td>
<td>0.5</td>
<td>1.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>1.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>1.0</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>0.9</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>0.8</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>0.7</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>0.6</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>0.4</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>زیر کشت</td>
<td>0.5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

نتیجه‌گیری

با استفاده از مدل کامپیوتری می‌توان برای شرایط آب و هوا و خاک مختلف مقادیر بهینه آب ایجادی و کود نیتروژن را بدون انجام آزمایش‌های مزرعه ای محاسبه نمود. برای شرایط اراضی دانشکده کشاورزی دانشگاه شیراز، در شرایط محدودیت زمین و قیمت‌ها و هزینه‌های فعلي با نیتروژن خالص در هکتار تعیین کردند. در توسعه تولید، مقادیر بهینه آب و نیتروژن بر اساس استفاده از آب‌های محدود مرور مربوط به درصد منظر گردید. به همین دلیل نتایج کم در مقادیر قیمت‌های آب و نیتروژن، مقادیر بهینه در سال 1386 و همانند سال 1385 می‌باشدند. در جدول 1 مقادیر درصد افزایش قیمت‌ها و هزینه‌ها در سال 1386 نسبت به سال 1385، در جدول 2 مقادیر بهینه و درصد خالص در سال‌های 1385 و 1386 نشان داده شده است.
کازبرد ۲۰۰۸ میلی‌متر آب آبیاری و ۳۵ کیلوگرم نیتروژن در هكتار می‌توان به‌حداکثر در آماده‌رسید. در شرایط محدودیت آب و وجود زمین‌کافی برای کشاورزی، مقدار مطلوب زمین‌کافی برای کشاورزی تولید می‌باشد. با افزایش مقدار آب و نیتروژن، مقادیر بهینه نیتروژن در شرایط محدودیت زمین و محدودیت آب و حداکثر محصول یکسان و برای میزان حداکثر تولید می‌باشد. با افزایش قیمت آب و نیتروژن، مقادیر بهینه نیتروژن در شرایط محدودیت زمین و آب کاهش یافته و مقدار بهینه آب در شرایط محدودیت زمین کاهش و در شرایط محدودیت آب تابع بوده و با افزایش کود نیتروژن مقدار آن افزایش می‌یابد.

منابع مورد استفاده

1. زند پارسا، ش. غ. ملکی، ع. ع. سیاسخو. ۱۳۸۰. زرفارا بهره‌نامه آب آبیاری ذرت در روش آبیاری بارانی. مجله علوم و فنون کشاورزی و منابع طبیعی (۴۴): ۱-۱۷.

2. مجتهدی هرمزی، ش. زند پارسا، ع. سیاسخو. ۱۳۸۵. پیش‌بینی مدل و استفاده از آن برای پیش‌بینی محصول و آب مورد نیاز ذرت علفی. جهت کاشت دریک محدوده زمینی مناسب. مجله علوم و فنون کشاورزی و منابع طبیعی (۴۴) (الف): ۳-۹۶.

3. مجتهدی هرمزی، ع. ف. دامیوز، ع. ف. کامگار حقیقی. ۱۳۸۶. ارزیابی مدل جهت پیش‌بینی تبخیر نرخ ذرت دانه‌ای و مقایسه نتایج آن با مقادیر حاصل از روش‌های پیش‌بینی فاوت. مجله علوم و فنون کشاورزی و منابع طبیعی (۴۱) (الف): ۲۷-۳۲.

