استفاده از مدل کامپیوتری شیاهسازی رشد ذرت (MSM) برای مدیریت آبیاری و کود نیتروژن

چکیده
مدیریت آب و کود نیتروژن محصولات کشاورزی به دلیل کمبود منابع موجود و مشکلات زیست محیطی پایدار بهبود بیابد. در سال‌های اخیر استفاده از مدل‌های کامپیوتری رشد گیاهان نش اهمیت در مدیریت آبیاری و کود نیتروژن افزایش یافته است. در این پژوهش، مدل‌آمادگی بهینه آب و کود نیتروژن در شرایط حداکثر محصول ذرت و حداکثر سود در شرایط محیطی زیمن و آب با استفاده از مدل کامپیوتری رشد ذرت در دور آبیاری هفت روز بعد از فصل رشد برآورده شدند. با اجرای مدل، عملکرد ذرت (Maize Simulation Model) MSM در ۳۵ مقدار فصلی آب از ۳۵۰۰۰ تا ۳۴۰۰۰ میلی‌متر و ۴۶ مقدار کود نیتروژن از صفر تا ۷۰ کیلوگرم نیتروژن خالص در هکتار شیاهسازی شد. آب آبیاری مناسب با تبخیر و تعرق هنگام بارش شد و اضافه نمودن ۳۸/۷۵ کود نیتروژن به ترتیب در ۱۹ و ۵۵ روز بعد از کاشت در نظر گرفته شد. با محاسبه هزینه‌های عملیات زراعی و کیفیت‌های رایج بازار در استان قارس مقدار بهینه آب و نیتروژن مصرفی تعیین گردید. در شرایط قیمت‌های رایج آب و کود نیتروژن و هزینه‌های رایج کشاورزی پرای تولید محصول ذرت (۸۸ ریال بر هر متر مکعب آب و ۱۹۴۶ ریال بر کیلوگرم نیتروژن). مقدار بهینه آب برای شرایط حداکثر محصول برای ۱۳۳۶۷ میلی‌متر و برای حداکثر سود در شرایط محیطی زیمن و محدودیت آب به ترتیب برای ۸۰۴۵ میلی‌متر محاسبه گردید. همچنین مقدار بهینه کود نیتروژن با توجه به مقادیر نیتروژن و آمونیوم خاک در موقع کاشت (به ترتیب برای ۱۲ و ۴۱ کیلوگرم نیتروژن خالص در هکتار تا قیمت ۳۲۰ ریال بر هر کیلوگرم) تعیین گردید. برای شرایط حداکثر محصول و محدودیت زیمن و آب، به دلیل قیمت پایین نیتروژن برای ۴۵ کیلوگرم در هکتار باید تغییر گردد. با قیمت آب و نیتروژن به میزان ۱۰۰۰ ریال بر متر مکعب و ۳۰۰۰۰ ریال بر کیلوگرم نیتروژن مصرفی، مقدار بهینه آب به ترتیب در در رشد برای شرایط محدودیت زیمن و محدودیت آب به ترتیب ۸۹ و ۲۲۷ میلی‌متر و مقدار بهینه نیتروژن به ترتیب ۱۲۰ و ۲۱۰ کیلوگرم نیتروژن در هکتار محاسبه شد.

واژه‌های کلیدی: آب، بهینه، ذرت، مدل MSM، نیتروژن

1. به ترتیب دانشجوی سابق کارشناسی ارشد، استادیار و استاد آبیاری، دانشکده کشاورزی، دانشگاه شیراز
zandparsa@yahoo.com: * مسئول مکاتبات، پست الکترونیکی

587
در نتیجه آن مقاقدی به‌هبن آب آبیاری و کود نیتروژن به ویژه در مناطق خشک و نیمه خشک جهت افزایش کارایی آب و کود برای کشاورزان بسیار اهمیت دارد. از هدف‌های افزایش کمک به هبن آب در آبیاری، موان به تولید حداکثر محصول و رشدیدن به حداکثر سود و نیز کاهش نیاز عقبی معنوی و مدیریت قدرن داده‌شده و در شرایط شوری اشتهار کرد (6). انگلیسی را جهت تعیین مقدار به‌هبن آب آبیاری براساس حداکثر صندی حداکثر محصول تولیدی و درآمد خالص کشاورزی ارائه داد انگلیسی و جهور (5) و انگلیسی و را (6)، مقادیر مفتاوت آبیاری را برای گیاهان مختلف تعیین کرده‌اند.

(7) آبان کردن که نیتروژن در گیاهان غلات به مقدار زیادی مورد نیاز بوده و در اغلب مواد کمپرس آن مشارکه می‌گردد. به همین دلیل مدیریت مناسب نیتروژن در مزرعه و کاربرد به‌هبن کود نیتروژن در مزرعه سیار اهمیت دارد. وینهولت و همکاران (1) بیان کرده که نیتروژن کیستی از اجزای پرتره و اسمی توکلیک، بوده و هنگامی که گیاه دچار کمبود نیتروژن بشود، رشد و عملکردن آن کاهش می‌یابد. پنگ و لئی (10) بیان کردن که آب در مناطق خشک نیمه خشک محصولات کشاورزی اصلی تولید‌های کشاورزی است. از طرف دیگر کمبود آب علاوه بر یک که به عنوان عامل و عمتدری تاثیر در تولید محصولات کشاورزی این امر است. انتقال دهنده مهم مواد شیمیایی و اقدام‌های آب‌زایی را تاثیر بگذاردن کاربرد نیتروژن به نحوه بازیابی و ایجاد آلودگی آهسته، بررسی تحقیقات صورت گرفته در کشاورزی و این نتایج نیتروژن (10) به دلیل حلالیت بالا در آب و امکان اشباع آن به عنوان یکی از منابع آبودن‌های محیط زیست مطرح بوده و همین که کمک به‌هبن نیتروژن به خصوص در خاک‌های کرد و مدل WOFOST و INTERCOM نیتروژن کاهش و کاربرد و خاصیت می‌شود سپس از این برای تفسیر گیاه را از آن کردن که و این نشان که تویدلی را گیاه‌سازی می‌کنند. در ماده خشک تویدلی مستقیماً از روی چند تاش CERES مدل خورشیدی و بارده مصرف انرژی پیشرفتی می‌گردد. در این 568
استفاده از مدل کامپیوتری شیب‌سازی رشد ذرت (MSM) برای مدیریت...

مدل اجرایی گیاه با استفاده از دما شیب‌سازی می‌گردد.
مدل ماده خشک، سطح بگ، تاریخ ایرپشته، Hybrid-maize
رشد ساقه و عملکرد بر یک آب و رشد دانه را مشابه مدل CERES
برآورده می‌کند. این مدل فتو سنتز و نام نشان نام مدل
Hybrid-maize تخمین زده می‌شود. در مدل INTERCOM
فرض شده که محدودیت کود و آب وجود ندارد و
پیشینه‌ی آن در شرایط ناپایدار محصول انجام می‌شود.
Maize Simulation (MSM) (Model) در مدل
روال هوشمندی در پیشینه محصول زده نظر گرفته شده
است. این مدل مقدار ماده خشک را با استفاده از تابیه تابیده
شده به بگرهگی گیاه شیب‌سازی می‌کند. این مدل با استفاده از
داهای حاصل از مدل حساسیت در سیستم آب‌یاری
جای‌گاهی توسط مهندس و همکاران (31) در اراضی دانشگاه
کشاورزی دانشگاه شیراز در سال‌های 1382 و 1383 برای
جدول بی‌تغییر و درصد مقدار زده روز درصد بی‌تغییر
دانه و مقدار محصول ایجاد گردد.

هدف از این پژوهش تخمین مقدار بی‌تغییر آب آب‌یاری و
کود بی‌تغییر در شرایط حساسی محصول تولیدی و
حداکثر سود در شرایط محتمل زمان و آب بر اساس نتایج
اجرا مدل در شرایط آب و هواهای نیمه خشک
می‌باشند.

مواد و روش‌ها

MSM تشريح مدل

جهت شیب‌سازی (Maize Simulation Model) MSM مدل
رشد درخت هیرپسند (Quick Basic) به زبان
Quick در یکی به زبان SC704 به زبان
آب‌یاری اشتغال شیراز تهیه شده است (19). این مدل دارای یک
برنامه اصلی و نه زیربرنامه‌ی مبتنی. یک برنامه‌های
عبارت‌اند از 1- جریان آب خاک 2- جریان گرم‌های خاک
3- حرکت بی‌تغییر در خاک 4- تحلیل تغییر شکل‌های بی‌تغییر
5- جذب بی‌تغییر توسط گیاه 6- تخمین بی‌تغییر تعیین واقعی

گیاه - تحلیل توسه ریه - ۸ تحلیل ناشی و ۹- تحلیل ماده
خشک و روی مدل شامل عوامل هیدرولوژی خاک (ضرایب
معادله و گوناگون)، مقدار و ژن‌کردن، قابلیت و زمان‌های
آب‌یاری، ماده و رطوبت خاک در روش کاهش و داده‌های
هوشمندی (شامل حساسیت و حداقل دما، حداکثر و حداقل
روطیت نسبی، ساعت به‌طور متوسط از
سطح زمین و مقدار بارگذاری) می‌باشد. این تغییر شکل‌های
بتاریخ را روزانه تخمین زده و سپس مقدار بی‌تغییر جدید
شده توسط قسمت‌های هواپیمایی را به صورت ساعتی
پیشینه‌ی کرده و در گام بعدی ناشی به یک جو، ناشی به
سطح زمین، ناشی ناشی به بگرهگی گیاه و تابیه خاصی
را در هر ساعت تخمین زده. این مقدار از تابیه ناشی
شده به بگرهگی گیاه و اصلاح آن با نا زمین و بی‌تغییر جدید
مقدار ماده خشک تولید تخمین زده می‌شود. شاخص سطح
برگ، بی‌تغییر تعریف واقعی، توزیع دمای خاک، ژریان گرم‌های
محصول، جریان گرم‌های خاک، هیدرولیز از زمین و
آموزی در خاک را ساعت به ساعت در طول فصل رشد
شیب‌سازی می‌نماید و این عملیات تا زمان برداشت ادامه
می‌باشد.

تولید درآمد و هزینه‌ی
بر اساس جمع هزینه‌های آماده‌سازی
[C(W,N), N] زمین، کشت، برداشت، هزینه‌های آب‌یاری مزونه،
هزینه‌های کاربرد آب و بی‌تغییر و هزینه تخمین می‌گردد. در آماده
خلاف (I) به آب آب‌یاری(W) و بی‌تغییر کاربردی(N)
و سطح آب‌یاری شده(A) برای کشت بستگی دارد:

\[I = A \times i(W, N) \] \[i(W, N) = P \times Y(W, N) - C(W, N) \]

که در آنها i(W, N) درآمد خاصی در واحد سطح، I مجموع
کل درآمد خاصی، P استفاده محصول تولیدی حسب ریال بر
واحده وزن و Yan مقدار محصول در واحد سطح می‌باشد.
هنگامی که منابع آب محدود باشند، سطح کشت تحت آب‌یاری

در استان فارس در سال 1385 و 1386 مقدار درآمد خالص (N) برای مقادیر مختلف آب آبیاری (W) و کود نیتروژن (N) مطلوب معادله 2 محاسبه گردید.

ماکدر بهینه آب و نیتروژن در حالت محدودیت زمین (N_L, W_L) بر اساس میزان آب و نیتروژن کاربردی به دست می‌آید که منجر به کسب حداکثر درآمد خالص در واحد سطح زمین می‌گردد. در حالت محدودیت آب، حجم محدودیت قابل حساب (m-Ha) برای آب (W_L) مثل‌برای حجم آب در حداکثر تولید در واحد سطح) در نظر گرفته می‌شود و مقدار درآمد خالص نیز از تناقض هزینه‌ها و درآمد حاصل از تولید در این معنی محدود محاسبه می‌گردد. این حالت، مناسب زیر کشت از محدوده زیر محاسبه می‌شود:

\[A = \frac{W_L}{W} \]

که در آن W مقدار کاربردی حسب متر و W تکیک W مقدار مناسب آب موجود (m-Ha) می‌باشد. مقدار بهینه آب و نیتروژن در این حالت در تیماری حاصل می‌شود (W_L, N_L) که مقدار حداکثر درآمد خالص را در واحد حجم آب تبیین می‌کند.

نتایج و بحث

تخصیص مصرف

در شکل 1 مقادیر از اندازه‌گیری شده و تخمین زده شده عملکرد دانه در ترکیب مدل در مقادیر مختلف کود نیتروژن و مقدار آب آبیاری متقابل شده‌اند. مدل مقدار عملکرد دانه را به صورت مطلوب پیش‌بینی می‌نماید.

در 3 اجرای مدل، مقدار بهینه آب آبیاری فصلی در 25 تیمار آب 375 تا 375 میلی‌متر و 424 میلی‌متر کود نیتروژن از صفر تا 45 کیلوگرم نیتروژن خالص در هکتار تخمین زده شد. آب آبیاری بدون بارش و مناسب با تبخیر تعریق با دور هفت روز توزیع شد و اضافه نمودن 50/۰ کود نیتروژن به تریم در 19 و 50 بر 65 و 65 به کاشت در نظر گرفته شد. بسته به اولیه اندازه‌گیری شده نتیجه‌گیری امنیت موجود تا عمق 60 سانتی‌متر خاک به تریم برای 14 و 21 کیلوگرم در هکتار نیتروژن خالص می‌باشد. بر اساس اساس در 110 حالت برای مقادیر مختلف آب و نیتروژن عملکرد دانه در تیمار بسیاری شد. با محاسبه هزینه‌های عملیات زراعی و بر اساس قیمت‌های رایح
شکل ۱. مقایه مقادیر شبیه‌سازی شده با توسط مدل و اندازه‌گیری شده

شکل ۲. نتایج عملکرد دانه ذرت (تن بر هکتار) حاصل از شبیه‌سازی مدل در مقادیر مختلف آب آبیاری و کاربرد نیتروژن
جواهر مقدار کود مصرفی در ان بزرگه ۴۵۰ (kg N ha⁻¹) در نظر گرفته شد. براساس نتایج حاصل از اجراي تمایلی شکل ۲، حداکثر عملکرد دانه‌ها درت بت مقدار ۱۲/۷۵ تن در هکتار در مقدار آب آبیاری و نیتروژن (Nₐ, Wₐ) برای ۱۳۴/۵ میلی‌متر و ۴۵۰ کیلوگرم نیتروژن در هکتار حاصل شد. بهترین مقدار آب آبیاری از ۱۳۶/۵ میلی‌متر می‌باشد که در نتیجه آب آبیاری در اثر تقویت عمیق، بخشی از نیتروژن از محیط ریشه شسته می‌شود که به عنوان مصرف زیاد کود، این امر خلاف در جذب نیتروژن توسط ریشه گیاه وارد نمی‌آورد.

تخمین هزینه
قیمت‌ها یا هزینه‌های رایج در سال ۱۳۸۵ مورد استفاده در این پژوهش بوده که به صورت زیر می‌باشد:
قیمت هر کیلوگرم گرم ذرات دانه‌ای (P) ۱۵/۷۶ ریال، قیمت هر کیلوگرم نیتروژن مصرفی (Cₚ) به‌ارای ۱۹۴۶ ریال، هزینه هر کیلوگرم ساخت بر قرص مصرفی در وک‌سایزر برابر محبوبه قیمت آب ۱۳۹/۵ ریال، هزینه کارگیری بر اساس ۴۵۰۰۰ ریال در ساخت و هزینه اجاره زمین برای فصل کشت دردناهای به‌هیزهای ۸۷/۱۰ و ریال برای یک هکتار بر اساس بروزهای محلی تعیین شد. هزینه ثابت تولید محصول شامل دانه‌های زمین، کشت، غذای و هزینه اجاره زمین به‌هیزهای ۸۵/۱۵ و ریال بر هکتار در محاسبات مربوط به درآمد منظور گردید.

مقدار بهینه آب و نیتروژن در شرایط محدودسیت زمین
مقدار بهینه آب و نیتروژن در شرایط محدودسیت زمین (Nᵢ, Wᵢ) براساس حداکثر درآمد حاصل در یک هکتار زمین و بر اساس قیمت‌های رایج برای آب آبیاری و نیتروژن به ترتیب ۱۹۸۶ میلی‌متر و ۴۵۰ کیلوگرم نیتروژن خالص در هکتار محبوبه کرده، مقدار ترتیب برای ۹۹۹ میلی‌متر و ۱۲۰ کیلوگرم نیتروژن در هکتار می‌باشد.
شکل 3: مقادیر درآمد خالص (ریال) به دست آمده در هکتار برای قیمت‌های رایج منطقه در مقادیر متفاوت آب آبیاری و نیتروژن کاربرده در شرایط محدودیت زمین

\[A = \frac{W_r}{W_w} \times \text{ha} \]

شکل 4: مقادیر درآمد خالص (ریال) به دست آمده در مقادیر متفاوت آب آبیاری و کود نیتروژن کاربرده در شرایط محدودیت آب
زیست محیطی که شامل آلودگی هوا و تخلیه‌های از از و توزیع گاز N2O و حاصل از نیترات و آلوده‌های آب‌های زیرزمینی ناشی از استفاده در نظر گرفته شود، مقادیر بهینه کاهش نیتروژن (Nw) و مقدار حداکثر آن می‌شود. در قیمت‌های رایج سال 1385 به دلیل باران دولتی که قیمت هر کیلوگرم نیتروژن خاصه 1946 ریال می‌باشد، کشاورزان به دلیل تاثیر کاهش نیتروژن در عملکرد اقدام به مصرف بیش از نیاز برای کشت در مقدار منطقه مورد استحصال فارس به مقدار 1175 کیلوگرم نیتروژن در هکتار نیز رسید که مقادیر زیادی از آن در خاک باقی مانده و با از طریق ایشومی به آب‌های زیرزمینی اضافه می‌گردد. همان‌طور که در شکل 2-الف نشان داده شده است، در شرایط محدودیت آب با افزایش قیمت نیتروژن مقدار بهینه آب آبیاری افراشی می‌باشد. این نتیجه با نتایج لیانو و بارنیوما (8) هم‌خوانی دارد.

براساس قیمت‌های رایج فعلی، مقدار بهینه آب آب‌یاری در شرایط محدودیت آب (Ww) برای 846 میلی‌متر تعیین گردد که نسبت به مقدار بهینه آن در شرایط حداکثر تولید محصول مقادیر بهینه آب آب‌یاری و کود نیتروژن در شرایط محدودیت آب (Ww) در رابطه با قیمت آب و نیتروژن در شکل 4 نشان داده شده است. هنگامی که قیمت واحد نیتروژن کاربردی (Cw) افزایش می‌یابد، به دلیل جذب w بهتر نیتروژن توسط گیاه در رطوبت‌های بالاتر، مقادیر افزایش و مقدار Nw کاهش می‌یابد (8). مقدار بهینه آب آب‌یاری و نیتروژن در شرایط محدودیت آب به قیمت آب کمک 1946 وینرینگرده، مقادیر Ww و Nw به برابر 36 و 1613 کیلوگرم نیتروژن در هکتار خواهند شد.

در مقدار آب آب‌یاری برابر 16 میلی‌متر، با کاربرد مقدار 100 کیلوگرم نیتروژن در هکتار عملکرد دانه 12/19 تن در هکتار می‌باشد و با کاربرد 45 کیلوگرم نیتروژن در هکتار عملکرد دانه به 16/14 تن در هکتار می‌رسد. در این‌جا، این افزایش تولید حاصل می‌گردد. به دلیل قیمت ارزان نیتروژن در پانزده، مقادیر Nw و Ww برای مقدار حداکثر در نظر گرفته شده در این پژوهش (250 کیلوگرم نیتروژن در هکتار) می‌باشد. با این وجود در صورتی که هریه آلوگون

574
شکل 6. مقدار بهینه آب آبیاری (W_m) و نیتروژن (N_m) در رابطه با هر کیلوگرم بهینه آب و
نیتروژن در شرایط محدودیت آب.

با توجه به شکل 7 مقدار بهینه آب آبیاری در شرایط محدودیت زمین نسبت به مقدار آبیاری تقریباً نسبت بوده است. در شکل 8 نیز مشاهده می‌گردد که مقدار بهینه آب آبیاری در شرایط محدودیت آب نسبت به مقدار آبیاری ثابت و مستقل از مقدار واحده آب می‌باشد. با کاهش میزان آب‌یابی از حد 6 متر به دلیل کاهش بسیار زیاد عمکلکرد، کشاورز به صورت زیادی مواجه خواهد شد با افزایش مصرف آب از حدی به بالای هم. به علت افزایش هزینه آب و زیاد نشدن عملکرد مناسب باید مناسب کشاورز ضرر می‌کند.

از دیدگاه و سیاست‌ها (18) براساس تابع تولید حاصل درآمد خالص در شرایط محدودیت زمین و آب

شکل های 7 و 8 مقدار درآمد خالص را در رابطه با مقدار فصلی آب آبیاری و تعداد حاصلات آب در مقدار ثابت کود نیتروژن به‌راست با (Rls kg ha$^{-1}$) به ترتیب در شرایط محدودیت زمین و آب

رشد می‌دهند.

575
شکل 7. مقادیر درآمد خالص در رابطه با مقادیر مصرفی آب آبیاری و قیمت‌های مصرف آب و مقدار کود

نیتروژن 450 کیلوگرم در هکتار با قیمت 5000 ریال بر کیلوگرم در شرایط محدودیت زمین

شکل 8. مقادیر درآمد خالص در رابطه با مقادیر مصرفی آب آبیاری و قیمت‌های مصرف آب و مقدار کود

نیتروژن 450 کیلوگرم در هکتار با قیمت 5000 ریال بر کیلوگرم در شرایط محدودیت آب

576
جدول ۱. مقدار درصد افزایش قیمت‌ها و هزینه‌های سال ۱۳۸۶ نسبت به سال ۱۳۸۵

<table>
<thead>
<tr>
<th>هزینه کل</th>
<th>هزینه کارگر</th>
<th>اجاره زمین</th>
<th>قیمت کود</th>
<th>قیمت دانه تولیدی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۶/۵</td>
<td>۲۰</td>
<td>۱۴</td>
<td>۶۶</td>
<td>۴۰</td>
</tr>
</tbody>
</table>

جدول ۲. مقدار بهبود آب و نیترات، عملکرد و درآمد خالص براساس قیمت‌ها و هزینه‌های سال‌های ۱۳۸۵ و ۱۳۸۶

<table>
<thead>
<tr>
<th>شرایط</th>
<th>عمق</th>
<th>افزایش سطح</th>
<th>نیترات</th>
<th>عملکرد</th>
<th>درآمد خالص</th>
<th>درآمد خالص سال</th>
</tr>
</thead>
<tbody>
<tr>
<td>آبیاری</td>
<td>%</td>
<td>(Rls ha⁻¹)</td>
<td>(Rls ha⁻¹)</td>
<td>(kg ha⁻¹)</td>
<td>(%)</td>
<td>(mm)</td>
</tr>
<tr>
<td>۱۳۸۶</td>
<td>۵۹/۵</td>
<td>۵/۴۳×۱۰⁻۵</td>
<td>۶/۲۰×۱۰⁻۵</td>
<td>۴۵۰</td>
<td>۴/۱۲</td>
<td>۷۹/۵</td>
</tr>
<tr>
<td>۱۳۸۵</td>
<td>۷۴/۶</td>
<td>۶/۴۴×۱۰⁻۵</td>
<td>۷/۲۰×۱۰⁻۵</td>
<td>۴۵۰</td>
<td>۶/۱۲</td>
<td>۸۴/۴</td>
</tr>
<tr>
<td>۱۳۸۵</td>
<td>۵۷/۵</td>
<td>۷/۴۳×۱۰⁻۵</td>
<td>۸/۲۰×۱۰⁻۵</td>
<td>۴۵۰</td>
<td>۸/۱۲</td>
<td>۸۵/۶</td>
</tr>
</tbody>
</table>

آماده‌سازی زمین، کاشت، داشت، برداشت و هزینه اجاره زمین به میزان ۱/۲۸۴×۱۰⁻۵ ریال در محاسبات مربوط به درآمد منظر گردید. به دلیل تفاوت کم در مقدار قیمت‌های آب و نیترات، مقدار بهبود در سال ۱۳۸۶ همانند سال ۱۳۸۵ می‌باشد. در جدول ۱ مقدار درصد افزایش قیمت‌ها و هزینه‌ها در سال ۱۳۸۶ نسبت به سال ۱۳۸۵، و در جدول ۲ مقدار بهبود درآمد خالص در سال‌های ۱۳۸۵ و ۱۳۸۶ نشان داده شده است.

نتایج گیری

با استفاده از مدل‌های کامپیوتری می‌توان برای شرایط آب و هوا و خاک مختلف مقدار بهبود آب آبیاری و کود نیترات را بدون انجام آزمایش‌های مزرعه‌ای تخمین زد. برای شرایط اراضی دانشکده کشاورزی دانشگاه شیراز، در شرایط محدودیت زمین و قیمت‌ها و هزینه‌ها فعلاً با نیترات خالص در هکتار تعیین کرده. در توالی تولید، مقدار بهبود آب و نیترات بر اساس استفاده از داده‌های محدودیت مزرعه‌ای تخمین زده می‌شود. به علت محدودیت در بعضی موارد ممکن است این مقدار بهبود خارج از محدوده داده‌های مزرعه‌ای قرار گیرد. بنابراین استفاده از آنها فقط برای شرایط آب و هوا و خاک محل آزمایش صادق است و نمی‌تواند عمومی داشته باشد. برای محاسبه مقدار بهبود آب و نیترات و مقدار درآمد خالص در شرایط مختلف در سال ۱۳۸۶، قیمت‌ها و هزینه‌ها را از این سال به صورت زیر می‌باشند:

قیمت هر کیلوگرم ذرت دانه‌ای (P) برابر ۲۴۰۰ ریال،
قیمت هر کیلوگرم نیترات منصوری (C₁) برابر ۲۶۵۰ ریال، هزینه کارگر برای آبیاری ۱۲۰۰۰ ریال در ساعت و هزینه اجاره زمین برای فصل کشت ذرات دانه‌ای به میزان ۸۰×۱۰⁻۵ ریال برای یک هکتار بر اساس برسی‌های محلی تعیین شد. هزینه ثابت تولید محصول (C₂) شامل
کاربرد ۲۰۰۸ میلی‌متر آب آبیاری و ۵۵ کیلوگرم نیتروژن در هکتار می‌توان به حداکثر درآمد رسید. در شرایط محدودیت آب و وجود زمین کافی یک کشاورزی، با محصول یک‌سی و برای میزان حداکثر تولید می‌باشد. اما افزایش قیمت آب و نیتروژن، مقدار بهره‌برداری نیتروژن در شرایط محدودیت زمین و آب کاهش یافته و لی مقدار بهره‌برداری آب در شرایط محدودیت زمین کاهش و در شرایط محدودیت آب تا بوده و با افزایش کود نیتروژن مقدار آن افزایش می‌یابد.

منابع مورد استفاده

1. زند پارسا، ش. غ. سلطانی و ع. سیاسخاهو. ۱۳۸۶. زرفا یکهته آب آبیاری ذرت در روش آبیاری بارانی. مجله علوم و فنون کشاورزی و منابع طبیعی ۳۱(الف): ۷۰-۷۸.
2. مجیدیه هریس، ش. زند پارسا، ش. سیاسخاهو و ع. کامگار حقیقی. ۱۳۸۵. ارزیابی مدل محدود و آب مورد نیاز ذرت عفونی گیاه کاشت دریک محدوده زمینی مناسب. مجله علوم و فنون کشاورزی و منابع طبیعی ۳۱(الف): ۴۳-۹۳.
3. مجیدیه هریس، ش. زند پارسا، ش. سیاسخاهو و ع. کامگار حقیقی. ۱۳۸۶. ارزیابی مدل جهت پیش بینی نیاز به آب برای ذرت؛ تعرق ذرت دانه‌ای و مقایسه نتایج آن با مقدار حاصل از روش‌های پیشنهادی. فناوری منابع طبیعی و فنون کشاورزی و منابع طبیعی ۳۱(الف): ۲۹-۵۲.