تهیه نقشه حساسیت به خطر زمین‌لرزش و ارزیابی آن با استفاده از ایران‌راه‌های فازی

حمدی‌زاده پورقاسی، حمدانی‌فر و مهندسی محیط

(تاریخ دریافت: ٢٣/١٣/٣٦/٣٩ نظر بی‌پایان: ٢١)

چکیده
شناخت نواحی مستعد وقوع زمین‌لرزش یکی از اقدامات اولیه در مدیریت منابع طبیعی و پردازش‌های توسعه‌ای و عمرانی است. هدف از این تحقیق، پیش‌بینی خطر زمین‌لرزش در بخشی از جویه آبی‌های روستایی و میان‌روده‌های روستایی است. برای این منظور با استفاده از عکس‌های هوایی و از نظر مدل‌های مبتنی بر مشخصات و معادلات واقعی آن‌ها، پرداختن به نواحی زمین‌لرزش منطقه تهیه گردید. به روش انتخابی، خمیساری آرا، خاصیت از جاده، خاصیت از چک و نقشه همبان در محیط GIS تهیه گردید. داده‌های مذکور در فرم‌ها برداشته و نتایج تمرین افزای از اجزای ذخیر انجام تحلیل‌های محاسباتی بر دریافت و پس از تعیین مقادیر و توابع عضویت فازی صورت گرفت. در این راستا، مقدار ٥/٩٧ در نتیجه به نواحی حساسیت به خطر زمین‌لرزش در منطقه مورد مطالعه دارد.

واژه‌های کلیدی: زمین‌لرزش، منطق‌های فازی، ایران‌راه‌های فازی، سامانه اطلاعات جغرافیایی، حوزه آب‌های فرازی

مقدمه
بررسی نواحی زمین‌لرزش و خطر زمین‌لرزش مانند بسیاری از موضوعات زمین‌شناسی محیطی (Geo Environment) و غیرنظامی به دلیل تابع عوامل هم‌زمان و وقوع زمین‌لرزش هم‌زمان و درآمد عرضه، به دلیل تابع عوامل مورد توجه می‌باشد. بنابراین در نظریه آرا، نیز جمله مطالعاتی که در زمینه پیش‌بینی خطر زمین‌لرزش با استفاده از منطق فازی انجام شدند. در این راستا، از مدل‌های (٢٢) در منطقه خورش رستم در جنوب غربی شهرستان خلخال در جنوبغربی خورشید با پیش‌بینی خطر زمین‌لرزش ترکیب شدند. در این راستا، نواحی حساسیت بستر استفاده از شبکه منظم به

١. به ترتیب دانشجوی سابق کارشناسی ارشد، استادیار و دانشجوی سابق کارشناسی ارشد مهندسی آب‌و-خاک‌سازی، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، تهران استادیار دانشگاه علوم پزشکی تهران و دانشجوی سیاست‌گذاری سیاست‌های اقتصادی ایران مهندسی آب‌و-خاک‌سازی، دانشکده منابع طبیعی و علوم دریایی. دانشگاه تربیت مدرس، تهران

٢. استادیار دانشگاه علوم پزشکی تهران و دانشجوی سیاست‌های اقتصادی ایران مهندسی آب‌و-خاک‌سازی، دانشکده منابع طبیعی و علوم دریایی. دانشگاه تربیت مدرس، تهران

morady5hr@yahoo.com

* مسئول مکاتبات، پست الکترونیکی: morady5hr@yahoo.com
پیش‌بینی و همکاران در کوههای آتشفشانی به بررسی و تهیه نتیجه خط تغییرات تصویری بر روی نمودار مدل احتمال تفسیرین بیسی، منطق فازی، عملکردهای جبری، لازم و فاکتور اطلاعاتی برد. نتایج نشان داد که عامل فازی دهنده بیشتری در تهیه نتیجه خط تغییرات تصویری بر روی نمودار عملکرد کام در محیط GIS پرداخت (21). بر اساس نشان داد که عملکردهای فازی گام‌ها با مقدار 96/0% بهترین شکل نقشه حساسیت شد. خط تغییرات تصویری بر روی نمودار افزایشی منطق فازی برداشته‌های فازی (22) ارکان‌گذاری در رابطه‌ای با استفاده از عضویت فازی (کلاشفسی مختص حساسیت‌بندی، لغزش) ارائه و از میزان استفاده فازی بر متغیر تعیین درجه عضویت فازی برای عملکرد متغیر لغزش از پیش زمان‌شناسی، توپوگرافی، چرخش گیاهی و کاربری اراضی استفاده کرده‌م. نتایج نشان داد که درجه عضویت تعیین زمان‌شناسی بر مبنای استفاده از نیروی بلانکر کش و نیروی تغییرات تصویری لغزش با استفاده از منطق فازی پرداخت (23). در این تحقیق توپوگرافی، زمان‌شناسی، گیاه‌کاری و پوشش گیاهی به عنوان عوامل مؤثر بر زمان لغزش انتخاب و با استفاده از عملکردهای فازی گام‌ها و شناسایند. متفاوت کشف کلاشفسی مختص حساسیت فازی کام‌ها و یک دهندگی کام، متفاوت مختص حساسیت از عملکردهای فازی کام‌ها بر پایه تغییرات تصویری لغزش بررسی قرار گرفت. نتایج نشان داد که عملکردهای فازی گام‌ها با مقدار 500/0 متغیر گردید. سپس واحدهای ذکر از نظر وجود عوامل مختلف لغزش همچون زمان‌شناسی، درصد شب دامنه، تدبیر اراضی، فاصله از غلک و نتیجه‌گیری متنوع مورد بررسی قرار گرفت و به وسیله مجموعه‌های فازی برخورد گردید. جانک و همکاران در جوی نداشتن در بستر و تهیه نقشه نتایج پایداری دامنه با استفاده از مجموعه‌های فازی پرداخت (24). به این منظور 4 طبقه از عوامل مؤثر در پایداری دامنه طبیعی شامل زمان‌شناسی، توپوگرافی، عوامل زمین‌سنگ‌پزشکی (پوشش گیاهی و کاربری اراضی) و داده‌های هوشمند (ماکبیک بارش نمونه) به منظور تجزیه و تحلیل عوامل لغزش‌های اطلاعاتی مورد بررسی قرار گرفت. در این تحلیل، بیشترین پیش‌بینی منطقه در کلاس خط تغییرات به عنوان فاصله از کسل و فاصله از شبکه آرامه مورد بررسی قرار گرفت. نتایج نشان داد که در روش فاکتور اطلاعاتی Dempster-Shafer لغزش پرداخته (25). در این مطالعه عامل مؤثر بر زمین‌شناسی، لغزش از قبیل زمان‌شناسی، فضای، کاربری اراضی، محوطه، دارای نقش ایفا می‌کند. چیزی و همکاران در پژوهش کرده‌م به منظور تهیه نقشه خط تغییرات تصویری لغزش از منطق فازی استفاده کردند. در این تحقیق از شبکه استنتاج فازی با عملکردهای مختلف، به ویژه ترکیبی از عملکردهای Or و (Uniform) استفاده گردید (26). نتایج نشان داد که تئوری مجموعه‌های فازی بر روی های کمی به‌پیشنهاد و ترسیم نقشه خط تغییرات تصویری لغزش تفاوت زیادی داشته و از انطباق‌پذیری بیشتری نسبت به آن پرداخته است. ارکانگذاری و همکاران در شمال غربی علل نسبت به بازدهی و تهیه نقشه حساسیت به منظور فازی استفاده از مجموعه‌های فازی و فاصله‌ای از طبقه‌بندی این پژوهش (If-Then Conditions) پرداخته (27). نتایج نشان داد که درصد لغزش نتایج ارائه از کلاس‌های حساسیت بالا به طور کلی (28% و خیلی بیان (25%) قرار دارد.
تهیه نقشه حسابی به طرح زمین‌لغزش و ارزیابی آن با استفاده از ایپتاروهاهای فازی

منطقه مورد مطالعه از طرف شمال به خط دؤمون، بندر غزه، بزرگراه ایستکلامی اماراتی، جنوب به خیابان جنوبی گدار، غرب به خیابان مهمان، شرق به خیابان شرقی گدار، بندر غزه و بزرگراه ایستکلامی اماراتی واقع شده‌است. این منطقه در سال 1357 خورشیدی، با کمک اینترنت و محاسباتی، به ایپتارهای فازی و فلزی پرداخته شد.

روش تحقیق

برای ارتقاء طرح زمین‌لغزش، ایپتارهای صحیح منطقه لغزش و درگیری نسبت به صحیح می‌باشد. لذا با استفاده از سیستم ایپتار، نسبت گذشتگی شناسی فرمات‌های پیشنهادی در منطقه مورد مطالعه قطعات واقع شده‌است. هر یک از عواطف مؤثر بر موقعیت زمین‌لغزش در منطقه شناسی شناخته و نشر گردیده است. در این تحقیق، ناسازی و ثبت مجدد ایپتارها به کمک شناسی فرمات‌های پیشنهادی ایپتارهای فازی در منطقه مورد مطالعه قطعات واقع شده‌است. هر یک از عواطف مؤثر بر موقعیت زمین‌لغزش در منطقه شناسی شناخته و نشر گردیده است. در این تحقیق، ناسازی و ثبت مجدد ایپتارها به کمک شناسی فرمات‌های پیشنهادی ایپتارهای فازی در منطقه مورد مطالعه قطعات واقع شده‌است.

مواد و روش‌ها

انگشته‌ها با استفاده از مدل حساسیت فرماتی (Frequency Ratio) سطح همبستگی نسبت لغزش موجود در منطقه مورد مطالعه و هر یک از عواطف مؤثر تبعیض گردیدند. برای محاسبه نسبت فرماتی، هر یک از عواطف مؤثر بر موقعیت زمین‌لغزش مشخص، سپس با استفاده از سیستم‌های اطلاعاتی، فرماتی پیشنهادی در سطح همبستگی نسبت لغزش و فاقد لغزش منطقه مورد مطالعه تعبیه و نتایج نسبت فرماتی برای هر یک از عواطف و کلاس‌های مربوط به آن با استفاده از رابطه 1 محاسبه گردید.

\[FR = A / B \]

(1)
جدول ۱ مقادیر عضویت فازی مربوط به عامل شبکه

| درصد پیکسل‌های تعداد پیکسل‌های درصد پیکسل‌های تعداد پیکسل‌های درصد پیکسل‌های
<table>
<thead>
<tr>
<th>کلاس بر حسب</th>
<th>درصد</th>
<th>۱/۴۳</th>
<th>۰</th>
<th>۰</th>
<th>۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>فاقد لغزش</td>
<td>۰-۵</td>
<td>۴۰۲۵۱</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>فاقد لغزش</td>
<td>۵-۱۵</td>
<td>۱۶۸۲۴۹۷</td>
<td>۵/۹۹</td>
<td>۲</td>
<td>۳/۶۴</td>
</tr>
<tr>
<td>لغزش</td>
<td>۱۵-۳۰</td>
<td>۳۴۱۶۸</td>
<td>۱۲/۰۶</td>
<td>۱۲</td>
<td>۲۱/۸۲</td>
</tr>
<tr>
<td>لغزش</td>
<td>۳۰-۵۰</td>
<td>۸۱۹۲۲</td>
<td>۲۱/۰۹</td>
<td>۱۰</td>
<td>۱۱۴/۳۶</td>
</tr>
<tr>
<td>لغزش</td>
<td>۵۰-۷۰</td>
<td>۷۱۱۱۲</td>
<td>۲۴/۹۴</td>
<td>۱۰</td>
<td>۱۵/۱۸</td>
</tr>
<tr>
<td>لغزش</td>
<td>۷۰-۹۰</td>
<td>۳۷۶۳۵</td>
<td>۲۹/۸۹</td>
<td>۱۱</td>
<td>۱۸/۷۱</td>
</tr>
</tbody>
</table>

که در آن A درصد پیکسل‌های لغزش و B درصد پیکسل‌های فاقد لغزش است. به‌منظور تجزیه و تحلیل‌های فازی در ابتدا وزنه‌های به دست آمده از روش نسبت فرآیند نرمال‌سازی (مین صفر و یک) وارد نمایندگی Idrisi عمل کند. با انتخاب نوع و شکل تابع عضویت، هر یک از نفشهای میکروئکتور فازی گریم. اگر با استفاده از روابط ۲ تا ۳ نفشهای خطیر برای منطقه مورد مطالعه یعنی ارiesz (وزن) هر

<table>
<thead>
<tr>
<th>مقادیر عضویت</th>
<th>فازی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۰/۶۲</td>
<td>۰/۳۲</td>
</tr>
<tr>
<td>۱/۴۹</td>
<td>۱</td>
</tr>
<tr>
<td>۱/۵۰</td>
<td>۰/۲۴</td>
</tr>
<tr>
<td>۰/۸۴</td>
<td>۰/۳۸</td>
</tr>
<tr>
<td>۰/۵۷</td>
<td>۰/۳۲</td>
</tr>
</tbody>
</table>

Product (رابطه ۲) و Sum (رابطه ۱) به‌منظور تجزیه و تحلیل‌های فازی در ابتدا وزنه‌های به دست آمده از روش نسبت فرآیند نرمال‌سازی (مین صفر و یک) وارد نمایندگی Idrisi عمل کند. با انتخاب نوع و شکل تابع عضویت، هر یک از نفشهای میکروئکتور فازی گریم. اگر با استفاده از روابط ۲ تا ۳ نفشهای خطیر برای منطقه مورد مطالعه یعنی ارiesz (وزن) هر

<table>
<thead>
<tr>
<th>Frequency ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
</tr>
<tr>
<td>۰/۶۲</td>
</tr>
<tr>
<td>۱/۴۹</td>
</tr>
<tr>
<td>۱/۵۰</td>
</tr>
<tr>
<td>۰/۸۴</td>
</tr>
<tr>
<td>۰/۵۷</td>
</tr>
</tbody>
</table>

Gamma (رابطه ۴) و

<table>
<thead>
<tr>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰</td>
</tr>
<tr>
<td>۲۰</td>
</tr>
<tr>
<td>۲۰</td>
</tr>
<tr>
<td>۲۰</td>
</tr>
</tbody>
</table>

$\mu_{\text{combination}} = \mu_A \cdot \mu_B \cdot \mu_C \cdot \ldots$ (رابطه ۵) و

Naive Bayes (رابطه ۶) به‌منظور تجزیه و تحلیل‌های فازی در ابتدا وزنه‌های به دست آمده از روش نسبت فرآیند نرمال‌سازی (مین صفر و یک) وارد نمایندگی Idrisi عمل کند. با انتخاب نوع و شکل تابع عضویت، هر یک از نفشهای میکروئکتور فازی گریم. اگر با استفاده از روابط ۲ تا ۳ نفشهای خطیر برای منطقه مورد مطالعه یعنی ارiesz (وزن) هر

<table>
<thead>
<tr>
<th>Or</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۷۸</td>
</tr>
<tr>
<td>جدول ۲. مقادیر عضویت فازی مربوط به عامل جهت شب</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>کلاس</td>
</tr>
<tr>
<td>شمال</td>
</tr>
<tr>
<td>شمال شرقی</td>
</tr>
<tr>
<td>شرق</td>
</tr>
<tr>
<td>جنوب شرقی</td>
</tr>
<tr>
<td>جنوب</td>
</tr>
<tr>
<td>جنوب غربی</td>
</tr>
<tr>
<td>غرب</td>
</tr>
<tr>
<td>شمال غربی</td>
</tr>
</tbody>
</table>

جدول ۳. مقادیر عضویت فازی مربوط به عامل لایه‌زدی				
کلاس	درصد پیکسل‌های فاقد لغزش	درصد پیکسل‌های لغزش	Frequency ratio	مقادیر عضویت فازی
EK	۳۶۹۷۲	۰/۴۸	۲/۳۲۲	۱
J₁	۲۳۶۹۵	۲/۳۱	۰/۰۵	۰/۰۵
J₂	۱۸۴۳۰	۵/۲۳	۰/۰۵	۰/۰۵
J₃	۲۱۸۷۸	۱۵/۶۹	۲/۱۶۱	۰/۰۵
K₁	۲۴۴۹	۱۱/۴۹	۰/۰۵	۰/۰۵
K₂	۱۳۴۳۵	۹/۴۲	۰/۰۵	۰/۰۵
K₃	۷۷۴	۱/۵۶	۰/۰۵	۰/۰۵
P₀	۱۸۱۷	۱/۵۶	۰/۰۵	۰/۰۵
P₁	۲۴۴۹	۰/۰۵	۰/۰۵	۰/۰۵
P₂	۴۴۳۹۳	۲/۰۵	۰/۰۵	۰/۰۵
Q⁰	۷۷۴	۱/۵۶	۰/۰۵	۰/۰۵
Q₁	۱۸۱۷	۱/۵۶	۰/۰۵	۰/۰۵
Q₂	۱۱۳۵	۱/۵۶	۰/۰۵	۰/۰۵
Q₃	۱۱۳۵	۱/۵۶	۰/۰۵	۰/۰۵
Q⁴	۱۱۳۵	۱/۵۶	۰/۰۵	۰/۰۵
TR₁	۸۳۹	۱/۵۶	۰/۰۵	۰/۰۵

جدول ۴ مقدار عضویت فازی مربوط به عامل ارتفاع از سطح دریا

| کلاس بر حسب متر | درصد پیکسل‌های فاقد لغزش | درصد پیکسل‌های لغزشی | مقدار عضویت | فراز
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۰۰-۱۵۰۰</td>
<td>۲/۲۴۵</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۱۵۰۰-۱۸۰۰</td>
<td>۳۸/۷۲۰۲</td>
<td>۱۳/۷۰</td>
<td>۲/۴۰</td>
<td>۱</td>
</tr>
<tr>
<td>۱۸۰۰-۲۱۰۰</td>
<td>۷۲/۷۶۳۴</td>
<td>۴۵/۴۵</td>
<td>۰</td>
<td>۰</td>
</tr>
<tr>
<td>۲۱۰۰-۲۴۰۰</td>
<td>۷۶۵/۶۵</td>
<td>۲۸/۸۳</td>
<td>۲/۷۲</td>
<td>۰/۷</td>
</tr>
<tr>
<td>۲۴۰۰-۲۷۰۰</td>
<td>۱۳۴/۷۸</td>
<td>۱۱/۱۰</td>
<td>۱/۸۹</td>
<td>۰/۵۷</td>
</tr>
<tr>
<td>۲۷۰۰-۳۰۰۰</td>
<td>۱۰۹/۷۶</td>
<td>۱/۴۹</td>
<td>۰/۳</td>
<td>۰/۳</td>
</tr>
<tr>
<td>بیش از ۳۰۰۰</td>
<td>۱/۲۳</td>
<td>۰</td>
<td>۰</td>
<td>۰</td>
</tr>
</tbody>
</table>

جدول ۵ مقدار عضویت فازی مربوط به عامل کاربری اراضی

| کلاس | درصد پیکسل‌های فاقد لغزش | درصد پیکسل‌های لغزشی | مقدار عضویت | فراز
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>مرطع</td>
<td>۶۱۷/۵۲۸</td>
<td>۲۱/۹</td>
<td>۱۰/۱۸</td>
<td>۵/۸۳۰</td>
</tr>
<tr>
<td>خوب</td>
<td>۱۸۱/۲۸۵</td>
<td>۲۴/۳۲</td>
<td>۴/۱۰</td>
<td>۰/۵۸</td>
</tr>
<tr>
<td>خوب متوسط</td>
<td>۳۷/۵۷۲</td>
<td>۱۳/۴۷</td>
<td>۸/۱۸</td>
<td>۰/۶۷</td>
</tr>
<tr>
<td>خوب بالا و کشاورزی</td>
<td>۸۸/۲۵</td>
<td>۵</td>
<td>۵/۱</td>
<td>۱</td>
</tr>
<tr>
<td>مسکونی</td>
<td>۵/۳</td>
<td>۰</td>
<td>۰/۳</td>
<td>۲/۲۳۳</td>
</tr>
</tbody>
</table>

جدول ۶ مقدار عضویت فازی مربوط به عامل فاصله از گسل

| کلاس | درصد پیکسل‌های فاقد لغزش | درصد پیکسل‌های لغزشی | مقدار عضویت | فراز
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۰۰۰-۲۰۰۰</td>
<td>۱۱۱/۵۰۰</td>
<td>۳/۹۴</td>
<td>۷/۲۷</td>
<td>۰/۷۷</td>
</tr>
<tr>
<td>۲۰۰۰-۳۰۰۰</td>
<td>۱۰۹/۵۰۰</td>
<td>۲/۳۸</td>
<td>۷/۱۹</td>
<td>۰/۶۸</td>
</tr>
<tr>
<td>۳۰۰۰-۴۰۰۰</td>
<td>۱۰۱/۶۹۰</td>
<td>۲/۸۵</td>
<td>۳/۸۲</td>
<td>۰/۴۵</td>
</tr>
<tr>
<td>۴۰۰۰-۵۰۰۰</td>
<td>۱۳۹/۵۰۰</td>
<td>۲/۲۰</td>
<td>۲/۳۹</td>
<td>۰/۳۹</td>
</tr>
<tr>
<td>بیش از ۵۰۰۰</td>
<td>۳۹/۲۵۰</td>
<td>۰</td>
<td>۰/۸۵</td>
<td>۰</td>
</tr>
</tbody>
</table>

به همین دلیل این ایرانی در پهن‌بندی خطر زمین لغزش تقیبی انسداد سطح منطقه‌ای از کلاس خطر کم قرار می‌دهد.

\[\mu_{\text{combination}} = \text{MAX}(\mu_A, \mu_B, \mu_C, \ldots) \]

این ایرانی فازی. Or عملکرد اجتماع مجموعه‌هاست. بدين صورت...
جدول 7: مقادیر عضویت فازی مربوط به عامل فاصله از بیشتر آراوه

<table>
<thead>
<tr>
<th>کلاس</th>
<th>درصد پیکسل های فاصله لغزش</th>
<th>تعداد پیکسل های لغزش</th>
<th>Frequency ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-0</td>
<td>36824/66</td>
<td>36</td>
<td>6/36</td>
</tr>
<tr>
<td>200-100</td>
<td>498566</td>
<td>5</td>
<td>9/1</td>
</tr>
<tr>
<td>300-200</td>
<td>329192</td>
<td>8</td>
<td>14/3</td>
</tr>
<tr>
<td>400-300</td>
<td>31199</td>
<td>2</td>
<td>3/6</td>
</tr>
<tr>
<td>500-400</td>
<td>924456</td>
<td>7</td>
<td>12/3</td>
</tr>
</tbody>
</table>

جدول 8: مقادیر عضویت فازی مربوط به عامل فاصله از جاده

<table>
<thead>
<tr>
<th>کلاس</th>
<th>درصد پیکسل های فاصله لغزش</th>
<th>تعداد پیکسل های لغزش</th>
<th>Frequency ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-0</td>
<td>337643</td>
<td>24</td>
<td>24/3</td>
</tr>
<tr>
<td>200-100</td>
<td>377186</td>
<td>3</td>
<td>5/1</td>
</tr>
<tr>
<td>300-200</td>
<td>8221</td>
<td>2</td>
<td>7/2</td>
</tr>
<tr>
<td>400-300</td>
<td>20876</td>
<td>4</td>
<td>7/7</td>
</tr>
<tr>
<td>500-400</td>
<td>18642</td>
<td>3</td>
<td>7/3</td>
</tr>
<tr>
<td>600-500</td>
<td>5542</td>
<td>17</td>
<td>3/0</td>
</tr>
</tbody>
</table>

جدول 9: مقادیر QS اپراتورهای مختلف فازی به منظور ارزیابی بهترین تنشه خطر لغزش

<table>
<thead>
<tr>
<th>QS</th>
<th>روش بهبودی خطر زمین لغزش</th>
<th>ردهبرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/3565</td>
<td>AND اپراتور</td>
<td>1</td>
</tr>
<tr>
<td>0/1511</td>
<td>OR اپراتور</td>
<td>2</td>
</tr>
<tr>
<td>0/5026</td>
<td>Sum اپراتور</td>
<td>3</td>
</tr>
<tr>
<td>0/4008</td>
<td>Product اپراتور</td>
<td>4</td>
</tr>
<tr>
<td>0/319</td>
<td>(0/5) Gamma اپراتور</td>
<td>5</td>
</tr>
<tr>
<td>0/797</td>
<td>(0/8) Gamma اپراتور</td>
<td>5</td>
</tr>
<tr>
<td>0/879</td>
<td>(0/9) Gamma اپراتور</td>
<td>7</td>
</tr>
<tr>
<td>0/129</td>
<td>(0/9) Gamma اپراتور</td>
<td>8</td>
</tr>
</tbody>
</table>

سایر میل کند و در نتیجه تعداد پیکسل کمتری در کلاس حساسیت به خطر زیاد و خیلی زیاد به لغزش قرار گرفت.

\[\mu_{\text{combination}} = \prod_{i=1}^{n} \mu_i, \]

که در آن \(\mu_i \) تابع عضویت فازی می‌باشد. در این اپراتور تعداد لايه‌های اطلاعاتی در هم ضرب می‌شوند. این اپراتور باعث می‌شود تا در شکل خروجی، اعداد کوچکتر شده و به سمت

381
در روش آماری نسبت فراوانی برای وزن‌دهی به لیته‌های مختلف اطلاعاتی از تاثیر حواشی توده‌ای منطقه استفاده شد. بیانادراست از تاثیر وزن‌دهی بر حواشی توده‌ای نسبت به پیشنهاد (امدی و همکاران 1) محاسبه و همکاران 8 مطالعه دارد. بررسی طبقات ارتفاعی نشان داد که در منطقه شما در سطحها با تأثیر ربطی به عوامل مؤثر و عوامل ارتفاعی نشان می‌دهد که بهترین انتخاب افزایش در جهات شمال و غرب به نسبت به دلیل این امر را می‌توان به تأثیر 32-0-20 درصد اتفاق افتاده که به نظرات مثبت 50-0-30 مطباق دارد. این نتایج بررسی جهت شبیه‌سازی وضعیت شما در محل کلاس ارتفاعی 1500-1500 متر (24) بهترین ردیابی درصد لغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهات جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهats جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهats جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهats جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهats جهت شبیه‌سازی حواشی توده‌ای 200-2100 متر (25) بهترین رتبه می‌دارد. بهترین ردیابی Lغزش نشان می‌دهد که در منطقه ابتدایی قرار دارد. از جهats جهت شبیه‌سازی حواشی Tوده‌ای استفاده کرد (22). جهت حل این مشکل از 78 نقطه لغزشی که در منطقه شناسی کد (3) نقطه لغزشی (نقطه لغزشی) برای مدل سازی و 1/3 نقطه لغزشی (23 نقطه لغزشی) برای کلیه داده‌های اندازه‌گیری استفاده گردید (19). سپس نتایج حاصله با نقشه پراکنش حواشی توده‌ای مقایسه گردید. یک نقاط نتایج خوب، نقشه‌ای است که بهترین جدايش را بین مناطق با تراکم بالای زمین لغزش و مناطق با تراکم پایین زمین لغزش ایجاد نماید. بدین منظور بر اساس رابطه [V] مقدار Qs = \sum_{i=1}^{n} (Dr_i - 1) * S
And

شکل ۲. نقشه خطر لغزش با اپراتور

Or

شکل ۳. نقشه خطر لغزش با اپراتور

۳۸۳
شکل ۴. نقشه خطر لغزش با اپراتور

شکل ۵. نقشه خطر لغزش با اپراتور

Sum

Product
نهایت نتیجه حساسیت به خطر زمینلرزه و ارزیابی آن با استفاده از ابزارهای فازی

شکل ۹ نشانه خطر لغزش با ابزارهای گامای ۰/۵

شکل ۷ نشانه خطر لغزش با ابزارهای گامای ۰/۸
شکل ۸: نشانه‌های خطر لغزش با اورانیوم گامای ۹۷۵/۰

شکل ۹: نشانه‌های خطر لغزش با اورانیوم گامای ۹۷۵/۰
تهیه نقشه حسابی به‌طور زمین‌لغزش و ارزیابی آن با استفاده از ایران‌تراکم‌های فازی

گیاهی زغال‌سنگ تشكل شده که بسیار حساس به حرکات
توده‌ای می‌باشد که با ناتوانی به دست آمدته توسط شناور و
همکاران (۵) و محمدی و همکاران (۵) مطالبت دارد. بررسی
کاربری اراضی منطقه –شناسی می دهد که پیش‌تر لغزش‌های منطقه
در کاربری مسکونی اتفاق افتاده که دلیل آن را می‌توان به نقش
مؤثران‌اندیش در اتوبوس‌های طیفی و ترخیب‌هایی که بوسیله
تغییرات کاربری اراضی از جمله ساخت و ساز در منطقه بوجود
آمده نسبت داد که با نظرات (امامی و همکاران (۱)، شاهرودی و
همکاران (۵)، فاطمی عقیقی و همکاران (۷)، و محمدی و
همکاران (۸)، مطالبت دارد. بررسی نتایج فالسه از کل
میده که لغزش‌های اتفاق افتاده در فاصله ۲۰۰۰ متری از کل
مشاهده شد است. بررسی عامل فاصله از شیبکه
آب‌های و اصله از دادن نشان داد که به ترتیب ۶/۴ و ۲/۴۳
لغزش‌های اتفاق افتاده منطقه در فاصله ۱۰۰۰ متری از جاده و
شیبکه آب‌ها ماهیت شده است که پیش‌ترین روانی را از نظر
لغزش به خود اختصاص دادهاند که با نظرات شاهرودی و همکاران
(۵) و فاطمی عقیقی و همکاران (۷) مطالبت دارد. نتایج
پنهان‌بندی خط زمین‌لغزش با استفاده از نتایج عضویت فازی در
شکل‌های ۲ تا ۹ ارائه گردید. دقت در شکل‌های ارائه شده
نانه میده که نقش پنهان‌بندی خط زمین‌لغزش تهیه شده با
اکتساب‌نار (۲۳)؛ لی (۲۰) مطالبت داشته است. نتایج ارزیابی
مدل‌ها تهیه شده با این‌ترکم‌های مختلف و بر لانسی
۱۳ نتایج لغزش شده در جدول ۴ نشان داده است. دقت در
جدول مذکور نشان میده نتایج خط زمین‌لغزش تهیه شده با
ایران‌تراکم‌های فازی ۹/۷ بهبود دقت و صحت را به‌ره
رباطه ۷ و مقدار QS (199) داشته است.

منابع مورد استفاده

۱- احمدی، ح.، محمد حسن، س.، فیضی، نیا و ج.، قذوی، س.، ساخت مدل منطقه‌ای خطر حرکت‌های توده‌ای با استفاده از ایران‌تراکم‌های فازی و یزدی‌های کیفی و تحلیل سلسله‌مراتبی سیستم‌ها (AHP)، مطالعه موردی جوزه آل‌آی‌خیر طالقانی، مجله منابع طبیعی ایران ۵۸، ۱۳۸۴.

۳۸۷
1. آشنایی. ۱۳۸۵. ارزیابی نگرانی ناباید دارای دانش‌های طبیعی در منطقه روودبار با استفاده از توپوگرافی پایان نامه کارشناسی ارشد زمین شناسی مهندسی، دانشگاه تربیت معلم، تهران.

3. روش‌گرایی ج. ر. مراکی، و. م.، فاطمی عقیق و. م. محمدی. ۱۳۸۵. مقدارهای بر منطق فازی و کاربرد آن در به‌پنده‌بندی خطر زمین، مجموعه مقالات همایش مطالعات طبیعی و توسعه پایدار در عرصه‌های جویی دریای خزر، دانشگاه آزاد اسلامی، ۱۷ فروردین ۱۳۸۵.

4. نتایج ک. ۱۳۸۵. مقدارهای بر منطق فازی برای کاربردی‌های عملی از (ترجمه علی و حیدریان کامبیز و حامدی‌پور طارقیان)، انتشارات دانشگاه فردوسی مشهد.

5. شهابی ح. و. م.، فاطمی عقیق و. م. محمدی. ۱۳۸۵. روش‌گرایی به‌پنده‌بندی خطر زمین لغزش با استفاده از مدل‌های ارتباط اطلاعاتی، نتراکم سطح و LNRE در جهش خاک‌کاری، مجله آپ. و آی. ۱۸-۸.

6. شهابی ح. و. م.، فاطمی عقیق و. م. محمدی. ۱۳۸۵. تحلیل مسائل انتخاب و سیاست‌های تعیین در سازمانهای کاری با به کارگیری سیستم‌های زندگی-فازی، مجموعه مقالات چهارم همایش مجموعه‌های فازی و کاربردهای آن، دانشگاه مازندران، ۷ و ۸ خرداد ۱۳۸۵. صفحات ۱۱۰-۱۱۱.

7. فاطمی عقیق و. م.، فاطمی عقیق و. م. محمدی. ۱۳۸۵. روش‌گرایی به‌پنده‌بندی خطر زمین لغزش با استفاده از منطق فازی (مطالعه موردی: منطقه روودبار)، مجله علوم دانشگاه تهران ۲۱ (۱) ۶-۱۰.

8. محمدی و. م.، فاطمی عقیق و. م. محمدی. ۱۳۸۵. بررسی ناباید دارای دانش‌های طبیعی، و کاربرد آن در آمار سرمزمین با استفاده از GIS مجموعه مقالات اولین همایش ملی پژوهش‌های آماری و آماری سرمزمین دانشگاه آزاد اسلامی واحد همدان، ۲ و ۲۱ خرداد ۱۹۸۱.

9. مهری‌فر و. م.، فاطمی عقیق و. م. محمدی. ۱۳۸۵. روش‌گرایی به‌پنده‌بندی خطر زمین لغزش منطقه خورش شهرستان، پایان نامه کارشناسی ارشد، زمین شناسی مهندسی، دانشگاه تربیت مدرس، تهران.

10. مریتعانی، و. م.، فاطمی عقیق و. م. محمدی. ۱۳۸۵. بررسی و کاربرد نیمه‌پنه‌بندی خطر زمین لغزش در مقياس ۲۵۰۰۰۰۰ با استفاده از GIS مطالعه موردی: تهران، پایان نامه کارشناسی ارشد، دانشگاه تربیت معلم، تهران.

