تغییرات عملکرد دانه و وزن گیاههای فیزیولوژیکی مرتبت با آن در ارقام گندم
اصلاح شده بین سال‌های 1380 تا 1380 در ایران

حمیدرضا میری

(تاریخ دریافت: 16/10/1388، تاریخ پذیرش: 1/8/1388)

چکیده

به منظور آگاهی از تغییرات صفات مورفولوژیک و فیزیولوژیکی در طی اصلاح گندم در فاصله سال‌های 1380 تا 1380 در کشور و تعیین رابطه این صفات با افزایش عملکرد دانه، آزمایش‌ها با استفاده از 15 سل گندم اصلاح شده در شهرستان ارسنجان (شمال شرق هرمزگان) در دو سال زراعی 1387 و 1388 طراحی و اجرای گردید. نتایج آزمایش نشان داد که سال مزرعی گونه و عملکرد دانه رابطه معنی‌داری و جوی دارد (P<0.01). شاخص برداشت و عملکرد بیولوژیک بطور معنی‌داری افزایش یافته است. تغییرات سرعت تولیدی نسبت به دوره معنی‌داری نبود، ولی سرعت تعرق و هدایت روتوژنیا به طور معنی‌داری افزایش یافته است. افزایش معنی‌دار شاخص کروافیلب پرگ در این دوره حاکی از این است که کاهش کروافیلب بره یافته است. افزایش عملکرد دانه در سنبله بطور معنی‌داری افزایش یافته است. تعداد سنبله در متر مربع افزایش یافته اما این افزایش معنی‌دار نبود. همچنین افزایش بیولوژیکی خاکه که در این دوره افزایش شاخص برداشت که در این دوره افزایش یافته است. به‌طور کلی نتایج حاکی از این است که در این دوره افزایش افزایش ضریب برداشت وارد دارد.

واژه‌های کلیدی: گندم، پاتانیل عملکرد، بهبود ژنتیکی، اجزای عملکرد، شاخص برداشت، عملکرد بیولوژیک

مقدمه

گندم (Triticum aestivum L.) بیش از یک چهارم تولید جهان غلات را تشکیل می‌دهد و منبع اصلی کالری برای بیش از 15 میلیارد نفر است. به‌طور میانگین گندم یک پنج کل گلی مورد نیاز مردم جهان را تأمین می‌کند (18). در برخی از مناطق جهان مانند شمال آفریقا، ترکیه و آسیای مرکزی گندم نیمی از انرژی روزانه مردم را تأمین می‌کند. این گیاه تقریباً در سطح

1. استاندارد زراعت دانشگاه آزاد اسلامی واحد ارسنجان

hmiri@iaua.ac.ir; ir
محصول و مدرن تولید بوماس ۱۶ درصد بیشتر از ارقام
صلاح شده سال ۱۹۷۰ است.

استفاده از زنده‌های بکارگیری‌گر در کنست در دهه ۱۹۶۰ با
کاهش ارتفاع سطح و در تبیه افزایش بهم دانه از مواد پرورده
و افزایش اجزای عمک‌برداری از لحیچه در افزایش
عمک‌برداری دانه داشته است (۲، ۲۲)، (۲۳، ۲۴، ۳۱). تقسیم دیگری
در افزایش عمک‌برداری مفتاوت بوده است. به‌طوری که در برخی
موار دنبال به افزایش تعادل دانه در سال (۲۳ و ۲۴)، تعادل
سیبیل در میزان (۳۷) یا هردو高低 این صفات (۸) شده است. به
طبق و همکاران (۷۷) تقسیم مفتاوت اجزای عمک‌برداری در
افراش عمک‌برداری در آزمایش‌های مختلف به استراتژی‌های
اصلی‌تر مورد استفاده مفتاوت در منابع مختلف مریبو
می‌شود (۷۷).

در بررسی تقسیم صفات فیزیولوژیک مانند فوستنز در
مطالعات آزمایشگاهی، مشارکت‌های شدید به راندمان استفاده از
تشریح (Radiation use efficiency) صورت زنده افراش نیازه (۱۱) از طرف دیگر فیزیولوژیک و
همکاران (۲۳) نشان دادن که افراش ۲۹ درصدی عمک‌برداری (بین
سال‌های ۱۹۶۰-۱۹۸۸) (۱۳) یا ۲۲ درصد افراش سرعت فوستنز
برگ، افراش ۶۳ درصد در هدایت روزنهای و کاهش
بر رابطه صحیح موتورهای (CTD) یا ۷۵ درصدم دامنه
در حدود ۰ درجه C است.

با وجود انجام مطالعات متعدد در رابطه تقسیم
فیزیولوژیک در افزایش عمک‌برداری دانه در گندم هنوز دانش ما در
این رابطه اندک است. در رابطه با ارقام گندم اصلاح شده در
کشور ما نیز مطالعات محدودی صورت گرفته است. بنابراین
برای آگاهی از تقسیم صفات فیزیولوژیک و مورفولوژیک در
طاری اصلاح گندم در ۴۶ سال گذشته در کشور آمایش حاضر
طرح و یا اجرا گردیده است.

مواد و روش‌ها
پژوهش حاضر در دو سال زراعی ۱۳۸۴، ۱۳۸۵ و ۱۳۸۵-۱۳۸۶ در
مزروع تحقیقات دانشگاه آزاد اسلامی واحده آستانلوک واقع در
بای افراش تقاضای برای غذا و نیاز روز افزون شده افراد
پیشنهاد زیادی بوده است. دانشمندان اصلاح گیاهان زراعی
برای آگاهی از بهبود عمک‌برداری از طریق صفات در طی یک دوره
از معرفت افراش تغییرات صفات را بررسی کردند و رابطه آنها را
با عمک‌برداری مشخص کرده (۲۸) یا این که این ایده‌ای
(Ideotype) یکه برای حداکثر عمک‌برداری و سپس ایجاد این
گیاه را پیشنهاد می‌کند (۱۵).

به‌طور زنده‌گیری‌گر عمک‌برداری دانه در سیستم‌های
پرمحصول جهان از دهه ۱۹۶۰ تقریباً یک درصد در سال می‌باشد.
است. برای اثبات می‌توان به نتایج مطالعات در مکروکت (۲۴ و
۲۵) است. اثبات آگاهی از تغییرات صفات فیزیولوژیک همراه با بهبود
زنده‌گیری‌گر عمک‌برداری برا افراش شناخت فاکتورهای
محصول کننده عمک‌برداری و برای تعیین استراتژی‌های اصلاح
نیازه در آینده ضروری است (۲۶).

تقسیم شاخه برداشت به عنوان مهم‌ترین صفت از افزایش
عمک‌برداری دانه گندم در مطالعات متعدد مورد تأکید قرار گرفته
است (۲۴، ۲۵، ۲۶، ۲۷). به‌طوری که در طی سال‌های گذشته، شاخه برداشت از حدود ۲۵ به حدود ۵۰ درصد افراش یافته. است. هنوز شاخه برداشت افراش در ارقام پر
محصول به سه شاخه بینی شده ان به ۳۸ درصد (۶)
نرسیده است. مشارکت‌های شدید که شاخه برداشت در
بهره‌برداری گندم زمینه در اگستان حدود ۴۰ تا ۵۶ درصد
(۲۷) و در ارقام به‌پراکنده به‌طور میانگین به ۴۵ درصد
می‌باشد. این روش این است که زنبور فرست‌های
زیادی برای بهبود شاخه برداشت در گندم وجود دارد.
برخی مطالعات نشان داده است که همراه به افزایش عمک‌برداری
دانه بیوماس تولیدی نسبت میانه است (۶) و (۵۴) از طرفی
در پاره‌ای مطالعات افراش این صفت همراه با افزایش عمک‌برداری
دانه مورد نظر قرار گرفته است (۵۴) و (۳۷). برای مثال
وادینگتون و همکاران (۱۶) مشاهده کرده که در ارقام پر
مقدمه
در حال حاضر، اینجا به سطح شهرستان استان فارس با ارتفاع 1490 متر از سطح دریا و طول جغرافیایی 34 درجه و 19 دقیقه شرقی و عرض جغرافیایی 29 درجه و 55 دقیقه شمال شرق شیراز صورت گرفت. همگان از گذشته از نوع بافت شنی رسی با یک درصد ماده آلی، pH 7/8 و قابلیت هیدرولیکی (EC) 059 میلی موس بر سانتی متر بود. اطلاعات الهام بخش اندازه‌گیری در طول مدت آزمایش بر اساس اینکه میزان مولکول در سال قبل به حالت صورت آبی بود به میزان 150 هزاری گلکروم در هکتار و مساحت 100 هزارکروم در هکتار به همراه اضافه شد. همه سطح نیمه در میان از کویر تیرنزن قبل از این مایعات کود تیرنزن در دو نوع مزرع در مراحل زیرپرور و ساقه رفتین به صورت سرک به کار برده شد. بعد از آماده سازی طرح کردن به طول 4 متر و عرض 25 متر انجام داده شد. به طوری که هر کرت آزمایشی 16 خط کشت با فاصله بین رتفید 15 سانتی‌متر قرار داشت که خطوط کناری برای اثر خانه‌ای و خطوط وسط برای اندازه‌گیری صفات مورد نظر استفاده قرار گرفت. کشت در سال اول در تاریخ 10 آذر و در سال دوم در تاریخ 9 آذر با دست انجام گرفت. تراکم نهایی در هر دو سال آزمایش 250 بوته در مترا بود. در تاریخ 10 آذر به صورت نری گلکرم به عملیات آبیاری و مازاده ی عفون‌های هرز و سایر آفات یار در حوض انجام داده شد.

طرح آزمایش به صورت بلوک‌های کامل تصادفی با چهار تکرار و تیمای شال 15 رقم از ارتفاع گندن نان بود. ارتفاع مورد استفاده در آزمایش از بین حدود 100 رقم اصلاح شده در بین سال‌های 1340 تا 1345 در شور به صورت انتخاب شد. به همکاری ادامه به خصوص به انتخاب اندازه‌گیری 20 نوع بافت به درستی انتخاب نشده از سطح خاک تا زیر سطح توسط برداشت شدند و انتخاب‌گیری که ارتفاع سطح به یک صفت مثبت اختلاف داشته، انتخاب نشده بود. اسامی ارقام مورد استفاده به همراه سال معرفی شدند.
جدول 1. داده‌ها هواشناسی منطقه آزمایش در طول دوره کشت گیاه زراعی

<table>
<thead>
<tr>
<th>سال</th>
<th>رطوبت نسبی (%)</th>
<th>میانگین دما (°C)</th>
<th>حداقل دما (°C)</th>
<th>حداکثر دما (°C)</th>
<th>بارندگی (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مهر</td>
<td>0</td>
<td>19/9</td>
<td>13/0</td>
<td>26/7</td>
<td>21/7</td>
</tr>
<tr>
<td>آبان</td>
<td>43/3</td>
<td>13/8</td>
<td>7/6</td>
<td>19/9</td>
<td>39/0</td>
</tr>
<tr>
<td>آذر</td>
<td>49/6</td>
<td>5/8</td>
<td>1/5</td>
<td>10/0</td>
<td>44/0</td>
</tr>
<tr>
<td>دی</td>
<td>10/2/8</td>
<td>5/6</td>
<td>-0/4</td>
<td>11/9</td>
<td>54/7</td>
</tr>
<tr>
<td>بهمن</td>
<td>37/6</td>
<td>7/3</td>
<td>1/4</td>
<td>13/2</td>
<td>48/7</td>
</tr>
<tr>
<td>اسفند</td>
<td>11/2</td>
<td>13/1</td>
<td>6/2</td>
<td>20/0</td>
<td>41/3</td>
</tr>
<tr>
<td>فروردین</td>
<td>0</td>
<td>18/5</td>
<td>11/4</td>
<td>25/5</td>
<td>26/3</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>0</td>
<td>20/5</td>
<td>14/3</td>
<td>28/6</td>
<td>21/5</td>
</tr>
<tr>
<td>خرداد</td>
<td>0</td>
<td>19/8</td>
<td>19/8</td>
<td>35/2</td>
<td>16/0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>سال</th>
<th>رطوبت نسبی (%)</th>
<th>میانگین دما (°C)</th>
<th>حداقل دما (°C)</th>
<th>حداکثر دما (°C)</th>
<th>بارندگی (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1385</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مهر</td>
<td>0</td>
<td>27/0</td>
<td>19/8</td>
<td>27/0</td>
<td>22/7</td>
</tr>
<tr>
<td>آبان</td>
<td>41/9</td>
<td>18/2</td>
<td>18/2</td>
<td>18/2</td>
<td>50/0</td>
</tr>
<tr>
<td>آذر</td>
<td>42/2</td>
<td>10/9</td>
<td>16/4</td>
<td>16/4</td>
<td>46/7</td>
</tr>
<tr>
<td>دی</td>
<td>47/7</td>
<td>10/8</td>
<td>10/8</td>
<td>10/8</td>
<td>54/0</td>
</tr>
<tr>
<td>بهمن</td>
<td>27/9</td>
<td>16/1</td>
<td>16/1</td>
<td>16/1</td>
<td>77/3</td>
</tr>
<tr>
<td>اسفند</td>
<td>13/2</td>
<td>19/6</td>
<td>19/6</td>
<td>19/6</td>
<td>43/2</td>
</tr>
<tr>
<td>فروردین</td>
<td>0</td>
<td>33/1</td>
<td>22/1</td>
<td>22/1</td>
<td>40/0</td>
</tr>
<tr>
<td>اردیبهشت</td>
<td>0</td>
<td>31/7</td>
<td>31/7</td>
<td>31/7</td>
<td>20/3</td>
</tr>
<tr>
<td>خرداد</td>
<td>0</td>
<td>35/4</td>
<td>35/4</td>
<td>35/4</td>
<td>24/5</td>
</tr>
</tbody>
</table>

عمکلی‌کیمتریک آنادزه‌گری شد.

نتایج و بحث

عملکرد دانه

ارقام مختلف از نظر عملکرد دانه اختلاف معنی‌داری نشان دادند (جدول 3). نتایج سال اول آزمایش نشان داد که عملکرد دانه از...
جدول ۲. ارقام مورد استفاده در آزمایش به هر هزار سال می‌رود و می‌داد آنها

<table>
<thead>
<tr>
<th>(kg/ha)</th>
<th>شماره</th>
<th>نام رقم</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳/۷۵</td>
<td>ساوه</td>
<td>۱۷۲۱</td>
</tr>
<tr>
<td>۳/۷۵</td>
<td>طبس</td>
<td>۱۷۲۶</td>
</tr>
<tr>
<td>۳/۷۵</td>
<td>اهوار</td>
<td>۱۷۳۷</td>
</tr>
<tr>
<td>۳/۷۵</td>
<td>ورامین</td>
<td>۱۷۳۷</td>
</tr>
<tr>
<td>۳/۷۵</td>
<td>کرمانشاه</td>
<td>۱۷۴۷</td>
</tr>
<tr>
<td>۴/۷۵</td>
<td>روستایی</td>
<td>۱۷۵۷</td>
</tr>
<tr>
<td>۵/۵</td>
<td>کرخ</td>
<td>۱۷۶۷</td>
</tr>
<tr>
<td>۵/۵</td>
<td>کرخ-بخش تحقیقات غلات</td>
<td>۱۷۷۷</td>
</tr>
<tr>
<td>۵/۵</td>
<td>کرخ-بخش تحقیقات غلات</td>
<td>۱۷۸۷</td>
</tr>
<tr>
<td>۵/۵</td>
<td>کرخ-بخش تحقیقات غلات</td>
<td>۱۷۹۷</td>
</tr>
<tr>
<td>۶/۵</td>
<td>کرخ-بخش تحقیقات غلات</td>
<td>۱۸۰۷</td>
</tr>
<tr>
<td>۶/۵</td>
<td>کرخ-بخش تحقیقات غلات</td>
<td>۱۸۱۷</td>
</tr>
<tr>
<td>۶/۵</td>
<td>کرخ-بخش تحقیقات غلات</td>
<td>۱۸۲۷</td>
</tr>
<tr>
<td>۶/۵</td>
<td>کرخ-بخش تحقیقات غلات</td>
<td>۱۸۳۷</td>
</tr>
<tr>
<td>۶/۵</td>
<td>کرخ-بخش تحقیقات غلات</td>
<td>۱۸۴۷</td>
</tr>
</tbody>
</table>

جدول ۳. میانگین عملکرد دانه، عملکرد پیروزیک و شاخص برداشت ارقام گندم

<table>
<thead>
<tr>
<th>شاخص برداشت (ک)</th>
<th>عملکرد بیولوژیک (g/m²)</th>
<th>عملکرد دانه (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۳۸۵-۸۵</td>
<td>۱۳۸۶-۸۵</td>
<td>۱۳۸۷-۸۵</td>
</tr>
<tr>
<td>۱۳۸۹-۸۵</td>
<td>۱۳۱۹</td>
<td>۱۲۸۶</td>
</tr>
<tr>
<td>۱۳۸۰-۸۵</td>
<td>۱۲۸۸</td>
<td>۱۲۸۶</td>
</tr>
<tr>
<td>۱۳۸۱-۸۵</td>
<td>۱۲۸۴</td>
<td>۱۲۴۳</td>
</tr>
<tr>
<td>۱۳۸۲-۸۵</td>
<td>۱۲۴۳</td>
<td>۱۲۳۲</td>
</tr>
<tr>
<td>۱۳۸۳-۸۵</td>
<td>۱۲۳۲</td>
<td>۱۲۲۰</td>
</tr>
<tr>
<td>۱۳۸۴-۸۵</td>
<td>۱۲۲۰</td>
<td>۱۲۱۸</td>
</tr>
<tr>
<td>۱۳۸۵-۸۵</td>
<td>۱۲۱۸</td>
<td>۱۲۱۶</td>
</tr>
<tr>
<td>۱۳۸۶-۸۵</td>
<td>۱۲۱۶</td>
<td>۱۲۱۴</td>
</tr>
<tr>
<td>۱۳۸۷-۸۵</td>
<td>۱۲۱۴</td>
<td>۱۲۱۲</td>
</tr>
<tr>
<td>۱۳۸۸-۸۵</td>
<td>۱۲۱۲</td>
<td>۱۲۱۰</td>
</tr>
<tr>
<td>۱۳۸۹-۸۵</td>
<td>۱۲۱۰</td>
<td>۱۲۰۸</td>
</tr>
</tbody>
</table>

LSD0.05 ۶/۲۱۲ ۵/۱۷۳ ۵/۸۲۳ ۵/۸۲۴ ۹/۳۶۹ ۷۶/۸۰
براساس رابطه رگرسیون در طی این 60 سال عملکرد دانه با میزان 8/75 گیلوگرم در هكتار در سال پا در 68/0 درصد در سال افزایش یافته است.

در طی دوره 60 سال اصلاح گندم در کشور بیشترین افزایش در سال های دهه 1350، 1351 میلادی بین زمان معرفی رقم کرچ 1، مشاهده شده است (جدول 3). این امر احتمالاً به دلیل

\[y = 5.7799x + 211.81 \]
\[r = 0.912** \]

\[y = 1.6314x + 1304 \]
\[r = 0.642** \]
تغییرات عملکرد دانه و وزن گاهی های پیروانی توظیفی مرتبط یا آن در ارقام گندم ...

وارد شدن زده‌های پاک‌واتهی در اصلاح ارقام مصادف با استفاده از آنها در دهه ۱۹۵۰ و ۱۹۶۰ میلادی در جهان بوده است. در همین رابطه، دو و همکاران (۳۷) مشاهده کردند که تعداد فاقد کردن تولید یک ارقام مصادف است. در طول مدت کوتاهی، مشاهده داده شده است که ارقام مصادف در دهه ۱۹۵۰ و ۱۹۶۰ میلادی همچنین به‌طور کلی در ارقام مصادف افزایش یافته است. در این مطالعه، سایر عوامل استفاده شده توسط برای کاهش پاک‌واتهی و بهبود برخی عوامل اضافه می‌شوند. در نهایت، این ارقام مصادف با استفاده از این ارقام مصادف است.

تغییرات عملکرد بیولوزیکی

تایب حاصل از تجزیه رگرسیون نشان داد که عملکرد بیولوزیکی در طول دوره ۶۰ ساله افزایش یافته است (شکل ۲). توجه به یک جدول ۳ نشان می‌دهد که خشکی این ارقام از نظر کل ماده خشک مورد استفاده برای افزایش می‌شود. در مطالعات مختلف از ارقام افزایش می‌شود. در نهایت، این ارقام مصادف با استفاده از این ارقام مصادف است.

نتایج آزمایش حاضر نیز حاکی از افزایش کل ماده خشک تولیدی در مطالعات مختلف از ارقام افزایش می‌شود. در نهایت، این ارقام مصادف با استفاده از این ارقام مصادف است.

شاخص برداشت

بین ارقام مختلف نشان داد که برداشت ارقام می‌شود. در مطالعه گذشته از این ارقام مصادف است.

29
ارقام قطعی دریای خاص‌تربیتی یکی قطعی در ارقام قطعی مناسب طیسی و شاه پسند است.

ارقام در این میزان در ارقام قطعی مناسب طیسی و شاه پسند است. (جدول 3).

نتایج نظرسنجی نیز حاکی از افزایش خطر و معنی‌دار شاخه بردنشت در طی 6 سال گذشته بود (شکل 3).

به‌طوری که بر اساس نتایج رگرسیون شاخه بردنشت با نسبت 44/00 درصد در سال افزایش یافته است (1/0003), (0/5/3)= 0/03 حاصل شد. افزایش عمیق‌تری که این نتایج می‌شود که باید نقدی استفاده و

به‌طوری که بر اساس نتایج رگرسیون شاخه بردنشت با نسبت 44/00 درصد در سال افزایش یافته است (1/0003), (0/5/3)= 0/03 حاصل شد. افزایش عمیق‌تری که این نتایج می‌شود که باید نقدی استفاده و

به‌طوری که بر اساس نتایج رگرسیون شاخه بردنشت با نسبت 44/00 درصد در سال افزایش یافته است (1/0003), (0/5/3)= 0/03 حاصل شد. افزایش عمیق‌تری که این نتایج می‌شود که باید نقدی استفاده و

به‌طوری که بر اساس نتایج رگرسیون شاخه بردنشت با نسبت 44/00 درصد در سال افزایش یافته است (1/0003), (0/5/3)= 0/03 حاصل شد. افزایش عمیق‌تری که این نتایج می‌شود که باید نقدی استفاده و
تخییرات عملکردها و ویژگی‌های فیزیولوژیک مرتبط با آن در ارقام گندم...

شکل ۳: رابطه بین سال معرفی رقم و شاخه برداشت

و

شکل ۴: رابطه بین سال معرفی رقم و سرعت فتوستنژ

علت این عدم همبستگی ممکن است به شیوه اندام‌گیری فتوستنژ (که معمولاً در کوتاه مدت و روی یک یا چند برهگ از یک واحد آزمایشی اندام‌گیری می‌شود) (۲۲ و ۴۴) و اثرات سیروگوم و جو (به تقلیل از منبع ۱۶) گزارش شده است که تنوع زیادی از نظر سرعت فتوستنژ بین ارقام مختلف وجود دارد. اما این اختلاف همبسته با عملکرد دانه همبستگی نداشته است.
جدول ۱. میانگین سرعت فتوسنتز، عطر، هدايت روزنه‌ای و شاخش کلروفیل ارقام گندم

<table>
<thead>
<tr>
<th>شاخش کلروفیل</th>
<th>سرعت تعقیب (mmol/m²/s)</th>
<th>سرعت تعقیب (mmol/m²/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شاه پسن</td>
<td>۲.۱</td>
<td>۲.۱</td>
</tr>
<tr>
<td>طبیعی</td>
<td>۲.۱</td>
<td>۲.۱</td>
</tr>
<tr>
<td>شعله</td>
<td>۱.۱</td>
<td>۱.۱</td>
</tr>
<tr>
<td>عدل ۱</td>
<td>۱.۱</td>
<td>۱.۱</td>
</tr>
<tr>
<td>عدل ۲</td>
<td>۱.۱</td>
<td>۱.۱</td>
</tr>
<tr>
<td>شاهی</td>
<td>۱.۱</td>
<td>۱.۱</td>
</tr>
<tr>
<td>۱۲۸</td>
<td>۱۲۸</td>
<td></td>
</tr>
<tr>
<td>۱۲۴</td>
<td>۱۲۴</td>
<td></td>
</tr>
<tr>
<td>۱۲۰</td>
<td>۱۲۰</td>
<td></td>
</tr>
<tr>
<td>۱۱۶</td>
<td>۱۱۶</td>
<td></td>
</tr>
<tr>
<td>۱۱۲</td>
<td>۱۱۲</td>
<td></td>
</tr>
<tr>
<td>۱۰۸</td>
<td>۱۰۸</td>
<td></td>
</tr>
<tr>
<td>۱۰۴</td>
<td>۱۰۴</td>
<td></td>
</tr>
<tr>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td></td>
</tr>
<tr>
<td>۹۶</td>
<td>۹۶</td>
<td></td>
</tr>
<tr>
<td>۹۲</td>
<td>۹۲</td>
<td></td>
</tr>
<tr>
<td>۸۸</td>
<td>۸۸</td>
<td></td>
</tr>
<tr>
<td>۸۴</td>
<td>۸۴</td>
<td></td>
</tr>
<tr>
<td>۸۰</td>
<td>۸۰</td>
<td></td>
</tr>
<tr>
<td>۷۶</td>
<td>۷۶</td>
<td></td>
</tr>
<tr>
<td>۷۲</td>
<td>۷۲</td>
<td></td>
</tr>
<tr>
<td>۶۸</td>
<td>۶۸</td>
<td></td>
</tr>
<tr>
<td>۶۴</td>
<td>۶۴</td>
<td></td>
</tr>
<tr>
<td>۶۰</td>
<td>۶۰</td>
<td></td>
</tr>
<tr>
<td>۵۶</td>
<td>۵۶</td>
<td></td>
</tr>
<tr>
<td>۵۲</td>
<td>۵۲</td>
<td></td>
</tr>
<tr>
<td>۴۸</td>
<td>۴۸</td>
<td></td>
</tr>
<tr>
<td>۴۴</td>
<td>۴۴</td>
<td></td>
</tr>
<tr>
<td>۴۰</td>
<td>۴۰</td>
<td></td>
</tr>
<tr>
<td>۳۶</td>
<td>۳۶</td>
<td></td>
</tr>
<tr>
<td>۳۲</td>
<td>۳۲</td>
<td></td>
</tr>
<tr>
<td>۲۸</td>
<td>۲۸</td>
<td></td>
</tr>
<tr>
<td>۲۴</td>
<td>۲۴</td>
<td></td>
</tr>
<tr>
<td>۲۰</td>
<td>۲۰</td>
<td></td>
</tr>
<tr>
<td>۱۶</td>
<td>۱۶</td>
<td></td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۲</td>
<td></td>
</tr>
<tr>
<td>۸</td>
<td>۸</td>
<td></td>
</tr>
<tr>
<td>۴</td>
<td>۴</td>
<td></td>
</tr>
</tbody>
</table>

پلائوتروفیک (Pleiotropic) این صفت و عملکرد دانه مربوط به مقدار نیکت‌بندی دانه و عملکرد دانه در مطالعه‌ای روی گندم‌هایی که بین سال‌های ۱۹۴۶ تا ۱۹۶۰ در آزمایش‌گاه‌های استان‌های مختلف اسلام‌شهر و جواره واقع شده بودند مشاهده شد که این صفت و عملکرد دانه، مقدار فتوسنتز گونه های دیبلوند و تنابولوند اجداد و جفت گندم های ارمزیی موجب افزایش نرخ نیکت‌بندی دانه و عملکرد دانه در مطالعه‌ای روی گندم‌هایی که بین سال‌های ۱۹۶۲ تا ۱۹۶۸ در المركزی CIMMYT مشاهده شده بودند. مشاهده کردند که هم‌بستگی معنی‌داری بین عملکرد دانه و فتوسنتز برگ پرچم وجود دارد. به طوری که افزایش ۲۹ درصدی عملکرد دانه (سال‌های ۱۹۶۲ تا ۱۹۶۸) با ۲۳ درصد افزایش سرعت فتوسنتز همراه بود. اما در غیب عناصر این مطالعه بین سرعت فتوسنتز
تغییرات عملکرد دانه و وزن گل‌های فیزیولوژیک مرتبط با آن در ارقام گندم

نشان داده شده است. این ارقام مختلف از نظر این ویژگی اختلاف معنی‌داری می‌دارند. پیشرفت‌ها و کمترین هدایت روزنامه به ترتیب در ارقام موردشست و طبیعی مشاهده شد. به ترتیب، 47/16 در سال اول و 32/16 میلی‌مول پی‌ترمیم بر ثانیه (در سال دوم) بیشترین و کمترین سرعت تعریق را داشتند. این ارقام موردشست، قفس، نیک‌زن، فلاته، کاهو و شیراز از نظر سرعت تعریق اختلاف معنی‌داری دارند. این ارقام مربوط به هزینه تعریق، اندازه‌گیری طبیعی، شاپ بست و شعله به‌طور معنی‌دار تعریق بیشتری داشتند. رابطه رگرسیونی بین سال معروف و سرعت تعریق در صورت برحیل افزایشی معنی‌دار بود (شکل 5). به عبارتی در طی این دوره 60 ساله سرعت تعریق برحیل خط افزایشی باتوجه است. این امر نشان داده کارایی پیشرفت جدید در جذب و مصرف آب حاکی از توجه نظام انتقال این ارقام جدید ممکن است ناشی از افزایش هدایت روزنامه در این ارقام باشد (شکل 6 و جدول 2).

در مطالعات صورت گرفته در کارا مشاهده شد که

- ارقام مختلف از نظر سرعت تعریق اختلاف معنی‌داری وجود دارند، همچنین همبستگی بین معنی‌دار بین سرعت تعریق در مرحله گلدهی و عملکرد دانه وجود دارد (26).

- چنگکو و مکдонالد در مدلی نه این‌که کلان با عملکرد های کاملاً منهای متفاوت مشاهده کرده، که سرعت تعریق و راندمان مصرف آب لحظه‌ای بین ارقام مختلف اختلاف معنی‌داری نداشت. در این‌که مرحله گلدهی تعریق پایین تر و راندمان مصرف آب بالای بود و این امر نشان داده که در طی مرحله زایش آب با کارا بیشتر، برابر تویت و همکاران (26) نیز مشاهده کردند که

- نظر راندمان مصرف آب لحظه‌ای وجود دارد، اما رابطه با عملکرد دانه نداشت. عدم وجود همبستگی بین راندمان مصرف آب و عملکرد در این آزمایش‌ها احتمالاً از اضارگیری لحظه‌ای و کوتاه مدت راندمان مصرف آب مربوط می‌شود (26).

- میزان کلروفیل برگ

شاخص کلروفیل برگ پرچم در ارقام مختلف از نظر آماری اختلاف معنی‌داری داشت و در ارقام جدید بیش از ارقام قدیمی بود (جدول 4). رقم پاراوارس در هر سال اول و دوم (به ترتیب با مقدار 95% و 30/5 درصد) بیشترین میزان کلروفیل برگ را داشت. کمترین میزان کلروفیل برگ در سال اول و دوم به ترتیب در ارقام طبیعی و عدل (1 با مقدار 50/5 و 74/8) مشاهده شد (جدول 4). به‌طورکلی بر اساس رابطه رگرسیونی بین سال معروف رقم و کلروفیل برگ (شکل 7) مشاهده شد که کلروفیل برگ پرچم در طی 60 سال گذشته به صورت خطی ارقام شاه پستند و مرودشست به ترتیب با تعریق /0 و /0 در سال اول و /3 میلی‌مول پی‌ترمیم بر ثانیه (در سال دوم) بیشترین و کمترین سرعت تعریق را داشتند. این ارقام موردشست، قفس، نیک‌زن، فلاته، کاهو و شیراز از نظر سرعت تعریق اختلاف معنی‌داری دارند. این ارقام مربوط به هزینه تعریق، اندازه‌گیری طبیعی، شاپ بست و شعله به‌طور معنی‌دار تعریق بیشتری داشتند. رابطه رگرسیونی بین سال معروف و سرعت تعریق در صورت برحیل افزایشی معنی‌دار بود (شکل 5). به عبارتی در طی این دوره 60 ساله سرعت تعریق برحیل خط افزایشی باتوجه است. این امر نشان داده کارایی پیشرفت جدید در جذب و مصرف آب حاکی از توجه نظام انتقال این ارقام جدید ممکن است ناشی از افزایش هدایت روزنامه در این ارقام باشد (شکل 6 و جدول 2).

- میزان کلروفیل برگ

شاخص کلروفیل برگ پرچم در ارقام مختلف از نظر آماری اختلاف معنی‌داری داشت و در ارقام جدید بیش از ارقام قدیمی بود (جدول 4). رقم پاراوارس در هر سال اول و دوم (به ترتیب با مقدار 95% و 30/5 درصد) بیشترین میزان کلروفیل برگ را داشت. کمترین میزان کلروفیل برگ در سال اول و دوم به ترتیب در ارقام طبیعی و عدل (1 با مقدار 50/5 و 74/8) مشاهده شد (جدول 4). به‌طورکلی بر اساس رابطه رگرسیونی بین سال معروف رقم و کلروفیل برگ (شکل 7) مشاهده شد که کلروفیل برگ پرچم در طی 60 سال گذشته به صورت خطی
شرايط محیطي گياه (به ویژه آبياري و وضعیت تغذیه) در زمان اندازه‌گیري است، ممکن است رابطه دقیقي بين ميزان کلروفیل برگ و عمليکي ديده شود. برای مثال، در گندم سبز و همکاران (37) مشاهده كردن كه بین ارقام قدديي و ارقام

از آنجا كه كلروفيل زنگاني اصلی فتوستات در گياه است ميزان كلروفیل برگ متواند معياري از ميزان فتوستات برگ باشد. ولي باتوجه به ميزان كلروفیل برگ به شدت تحت تأثیر افزایش بافته است (1/0>195/001LE6)*r.

شکل 5: رابطه بين مبرفی رقم و سرعت تعرق

شکل 6: رابطه بين مبرفی رقم و هدايتي روزنهای

\[y = 0.0258x + 4.3983 \]
\[r = 0.745** \]

\[y = 0.0014x + 0.1186 \]
\[r = 0.659** \]
تغییرات عملکرد دانه و ویژگی‌های فیزیولوژیک مربوط به آن در ارقام گندم

جدول ۵: ارقام جدید در مقایسه با ارقام قدمی تعداد سیب

بیشتری توزیع کردن. با وجود گونه در طی دوره اصلاح جدید کننده تعداد سیب به طور خطی افزایش یافته است. اما این افزایش از نظر آماری معنی‌دار نبود (شکل ۸).

از و همکاران (۴۷) روند مشخصی از تغییرات تعداد سیب در مترمیم در طی ۴۰ سال اصلاح گندم در چین نیافته‌اند. ولی آستین و همکاران (۸) نشان دادند که ارقام جدید در مقایسه با ارقام قدمی درصد دانه بیشتری توزیع کردن، که این بدلیل تولید سیب بیشتر و تعداد دانه بیشتر در هر سیب است بهطوری که در ارقام جدید تعداد سیب при در مترمیم ۱۴ درصد بیش از ارقام قدمی بود. آیبی و همکاران (۲) نیز هم‌ستگی معنی‌داری بین تعداد سیب و عملکرد دانه مشاهده کردند.

روی و همکاران (۲۳) گزارش کردند که تعداد دانه در مترمیم در ارقام اصلاح شده بین سال‌های ۱۹۵۵ تا ۲۰۰۰ با نسبت ۲۵/۵ درصد در سال افزایش یافته است که در این رابطه تعداد گیاه در واحد سطح و تعداد سیب در هر گیاه بیشتری تریپ تعداد گیاه در واحد سطح و تعداد سیب در هر گیاه بیشتری تریپ

۲۵۴ در سال دوم) و بیشترین تعداد سیب در سال اول در رقم

موردش (۳۵۳) و در سال دوم در رقم قدس (۴۸۰) دیده شد.

این عملکرد دانه

تعداد سیب در مترمیم – از نظر تعداد سیب در مترمیم اختلاف آماری معنی‌داری بین ارقام مختلف وجود داشت (جدول ۵). کمترین تعداد سیب مربوط به رقم شاه پسن (۳۰۲ در سال اول و

شکل ۷: رابطه بین سال معرفی رقم و کاروفیل برگ

زیر و همکاران (۲۴) گزارش کردند که میزان کاروفیل برگ با عملکرد همبستگی ندارد. اگرچه بین سرعت فتوافشی و کاروفیل برگ همبستگی معنی‌داری وجود داشت. موریسون و همکاران (۲۹) گزارش کردند که با وجود که

ال ارقام سویا از نظر غلظت کاروفیل ۵۱۳ اختلاف وجود داشت، اما رابطه معنی‌داری بین غلظت کاروفیل و عملکرد وجود نداشت.
جدول 5: میانگین اجزای عملکرد دانه و ارتفاع ارقام گندم

<table>
<thead>
<tr>
<th>ارتفاع بونه (cm)</th>
<th>وزن هزار دانه (g)</th>
<th>تعداد دانه در سبله</th>
<th>تعداد سبله در مترمربع</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-86</td>
<td>84-85</td>
<td>83-84</td>
<td>82-83</td>
</tr>
<tr>
<td>128/8</td>
<td>123/3</td>
<td>121/4</td>
<td>118/1</td>
</tr>
<tr>
<td>111/2</td>
<td>107/1</td>
<td>103/5</td>
<td>100/4</td>
</tr>
<tr>
<td>98/4</td>
<td>97/3</td>
<td>96/2</td>
<td>95/1</td>
</tr>
<tr>
<td>89/1</td>
<td>88/0</td>
<td>87/9</td>
<td>86/8</td>
</tr>
<tr>
<td>98/5</td>
<td>97/4</td>
<td>96/2</td>
<td>95/1</td>
</tr>
<tr>
<td>75/4</td>
<td>73/8</td>
<td>72/1</td>
<td>70/2</td>
</tr>
<tr>
<td>88/0</td>
<td>86/2</td>
<td>84/9</td>
<td>83/0</td>
</tr>
<tr>
<td>79/3</td>
<td>77/1</td>
<td>75/0</td>
<td>73/7</td>
</tr>
<tr>
<td>82/3</td>
<td>80/5</td>
<td>79/0</td>
<td>78/2</td>
</tr>
<tr>
<td>76/0</td>
<td>75/3</td>
<td>74/3</td>
<td>73/2</td>
</tr>
<tr>
<td>73/5</td>
<td>72/2</td>
<td>71/7</td>
<td>70/5</td>
</tr>
<tr>
<td>77/0</td>
<td>76/3</td>
<td>75/2</td>
<td>74/3</td>
</tr>
<tr>
<td>76/9</td>
<td>75/0</td>
<td>74/2</td>
<td>73/5</td>
</tr>
<tr>
<td>74/3</td>
<td>73/7</td>
<td>72/7</td>
<td>71/5</td>
</tr>
<tr>
<td>76/5</td>
<td>76/5</td>
<td>75/2</td>
<td>74/3</td>
</tr>
</tbody>
</table>

LSD0.05

![Diagram](image-url)

شکل 8: رابطه بین سال معرفی رنم و تعداد سبله

منبع: انسات، سال 1387، شماره چهلم، صفحه 56
تغییرات عملکرد دانه و بزوی‌گی‌های فیزیولوژیکی مرتبط با آن در ارقام گندم

وزن هزارانه

تغییرات وزن هزارانه در ارقام مختلف در جدول ۵ نشان داده شده است. بیشترین وزن هزارانه در ارقام چهار میلی‌متری از نظر تعداد در سنبله اختلاف آماری معنی‌داری وجود داشت. رقم ۱۶/۷ و ۱۷/۳/۶ داده‌ها در هر سنبله سه ترکیب در ارقام دوم و دوم کمترین تعداد دانه در سنبله را داشتند. بیشترین تعداد دانه در سنبله سوم در رقم ۵/۹ دانه در سنبله سوم نشان داد. تجزیه رگرسیون نشان داد که تعداد دانه در سنبله در طی اصلاح گندم به طور معنی‌داری و به صورت خطی افزایش یافته است (شکل ۹). به طوری که افزایش سالانه تعداد دانه در سنبله ۲/۱ دانه در سنبله در هر سال بود.

وادیگنج‌تو و همکاران (۸) گزارش کردند که میانگین وزن هزارانه در ارقام قدمی و خدمات تغییر چندانی نیافته است. وزن دانه به عنوان یکی از جزئیات ارزش‌داری عملکرد که تغییرات معنی‌داری با عملکرد دانه نداشت و وزن دانه در ارقام جدید ثابت مانده است. علاوه بر این به نظر می‌رسد که در ارقام جدید در مقایسه با ارقام قدمی کندم، وزن دانه حساسیت بیشتری به سطح‌های طبیعی در طی دوره پر گندم داده می‌گردد (۲۰ و ۲۴). برای مثال درگاه و همکاران با حفظ برگ‌ها در دوره پس از کل مسمومیت گندم، مشاهده کردند که در ارقام قدمی وزن دانه تحت حفظ قرار گرفت ولی در ارقام جدید وزن دانه به طور معنی‌داری کاهش یافت.

معناده است که افزایش سنبله در مترمیسوله در شرایطی که تراکم گیاهی کشت شده باشد، قابل مشاهده است و در

دانه در گندم همبستگی معنی‌داری مشاهده کردن. وادیگنج‌تو و همکاران (۸) بیان کردند که تعداد دانه در ارقام چهار میلی‌متری را به افزایش تعداد سنبله نسبت دادند. به طوری که در ارقام چهار میلی‌متری در مقایسه با ارقام متروپ به قبل از سال ۱۸۷۲ تعداد دانه در مترمیسوله ۳۲ دانه سالانه افزایش یافته است.

تعداد دانه در سنبله

نتایج متروپ به تعداد دانه در سنبله در جدول ۵ نشان داده شده است. بین ارقام مختلف از نظر تعداد دانه در سنبله اختلاف آماری معنی‌داری وجود داشت. رقم ۱۶/۷ و ۱۷/۳/۶ داده‌ها در هر سنبله سه ترکیب در ارقام چهار میلی‌متری کمترین تعداد دانه در سنبله را داشتند. بیشترین تعداد دانه در سنبله سوم در رقم ۵/۹ دانه در سنبله سوم نشان داد. تجزیه رگرسیون نشان داد که تعداد دانه در سنبله در طی اصلاح گندم به طور معنی‌داری و به صورت خطی افزایش یافته است (شکل ۹). به طوری که افزایش سالانه تعداد دانه در سنبله ۲/۱ دانه در سنبله در هر سال بود.

وادیگنج‌تو و همکاران (۸) گزارش کردند که میانگین وزن هزارانه در ارقام قدمی و خدمات تغییر چندانی نیافته است. وزن دانه به عنوان یکی از جزئیات ارزش‌داری عملکرد که تغییرات معنی‌داری با عملکرد دانه نداشت و وزن دانه در ارقام جدید ثابت مانده است. علاوه بر این به نظر می‌رسد که در ارقام جدید در مقایسه با ارقام قدمی کندم، وزن دانه حساسیت بیشتری به سطح‌های طبیعی در طی دوره پر گندم داده می‌گردد (۲۰ و ۲۴). برای مثال درگاه و همکاران با حفظ برگ‌ها در دوره پس از کل مسمومیت گندم، مشاهده کردند که در ارقام قدمی وزن دانه تحت حفظ قرار گرفت ولی در ارقام جدید وزن دانه به طور معنی‌داری کاهش یافت.

معناده است که افزایش سنبله در مترمیسوله در شرایطی که تراکم گیاهی کشت شده باشد، قابل مشاهده است و در
شماره ۱۰ رابطه بین سال معرفی رقم و وزن هزار دانه

شماره ۹ رابطه بین سال معرفی رقم و تعداد دانه در سیسه

دانده که ارتفاع ساقه در بین صفات مورد بررسی بیشترین تغییرات را نشان داد. به‌طوری که ارتفاع بونه در طی ۵۵ سال یا نسبت ۸/۱ درصد سال کاهش یافته است.

ارتفاع ساقه

ارتفاع ساقه ارتفاع مختلف بین ۷۹ تا ۱۳۶ سانتی‌متر در سال اول و ۳۳ تا ۱۱۲ سانتی‌متر در سال دوم تغییر بود (جدول ۵). در سال اول ارتفاع شانس و کرک بی ترکیب بیشتر و کمترین ارتفاع ساقه را داشتند. در سال دو نیز بیشترین و کمترین ارتفاع ساقه به ترتیب در ارتفاع طبیعی و پاواورس مشاهده شد. رابطه رگرسیون بین سال معرفی رقم و ارتفاع ساقه نشان داد که ارتفاع ساقه در طی دوره ۶۰ ساله به صورت خطی کاهش یافته است (شکل ۱۱). که این کاهش بیش از نیم درصد است (۱/۸۸). براساس رابطه رگرسیونی ارتفاع ساقه در این دوره با نسبت ۶۹/۹ سانتی‌متر با ۵/۳ درصد در سال کاهش یافته است.

همبستگی بین صف‌های همبستگی بین صف‌های خصوصی بررسی در دو سال آزمایش و جدول ۶ نشان داده شده است. شاید بخش برداشت، تعداد دانه در سیسه و سرعت ترخی صفات همبستگی منفی و با سیار معنی دارد با عکملکرد دانه داشته باشد. ارتفاع بونه همبستگی منفی و با سیار معنی دارد با عکملکرد دانه داشته باشد. تعداد سیسه در مرحله دوم با عکملکرد بیولوژیک، هدایت روندهای و شاخص کارفول نزدیک همبستگی معنی‌داری با عکملکرد دانه نشان دادند. بین سرعت تغییر وزن هزار دانه با عکملکرد همبستگی معنی‌داری دیده نشد.
جدول ۶: ضرایب همبستگی بین صفات (میانگین در سال آزمایش)

<table>
<thead>
<tr>
<th>سال آزمایش</th>
<th>۱۹</th>
<th>۱۸</th>
<th>۱۷</th>
<th>۱۶</th>
<th>۱۵</th>
<th>۱۴</th>
<th>۱۳</th>
<th>۱۲</th>
<th>۱۱</th>
<th>۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>ضرایب همبستگی</td>
<td>۰.۶۹۴۳۶</td>
<td>۰.۶۸۸۶۶</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>такث‌هایه</td>
<td>۱۵۱۵</td>
<td>۱۰۹۹</td>
<td>۱۰۵۱</td>
<td>۱۰۲۷</td>
<td>۱۰۰۵</td>
<td>۹۷۵</td>
<td>۹۵۵</td>
<td>۹۳۵</td>
<td>۹۱۵</td>
<td>۸۹۵</td>
</tr>
<tr>
<td>ارتقای بهر</td>
<td>۱۰۰۹</td>
<td>۹۹۹</td>
<td>۹۹۹</td>
<td>۹۹۹</td>
<td>۹۹۹</td>
<td>۹۹۹</td>
<td>۹۹۹</td>
<td>۹۹۹</td>
<td>۹۹۹</td>
<td>۹۹۹</td>
</tr>
<tr>
<td>ارتقای بهر</td>
<td>۰۸۸۵</td>
</tr>
<tr>
<td>ارتقای بهر</td>
<td>۰۸۸۵</td>
</tr>
<tr>
<td>ارتقای بهر</td>
<td>۰۸۸۵</td>
</tr>
<tr>
<td>ارتقای بهر</td>
<td>۰۸۸۵</td>
</tr>
<tr>
<td>ارتقای بهر</td>
<td>۰۸۸۵</td>
</tr>
<tr>
<td>ارتقای بهر</td>
<td>۰۸۸۵</td>
</tr>
<tr>
<td>ارتقای بهر</td>
<td>۰۸۸۵</td>
</tr>
<tr>
<td>ارتقای بهر</td>
<td>۰۸۸۵</td>
</tr>
<tr>
<td>ارتقای بهر</td>
<td>۰۸۸۵</td>
</tr>
</tbody>
</table>

ضرایب همبستگی حاکی از این است که در بین صفات بررسی شده، شاخص برداشت و تعداد دانه در سه شرایط آزمایش سنتی دانه‌های اصلاح‌شده در این دوره رابطه داشته‌اند. تعداد ساله در مترمی طی حدودی نقش کمبودی در این افرازی اعمالکرده‌اشته‌است. همچنین در طی این دوره وزن دانه‌ها تا حدودی کاهش یافته است. هرچند این کاهش از نظر آماری معنی‌دار نبود. علت کاهش میانگین وزن دانه به رابطه جایگزینی اجزای اعمالکرده مربوط به شود. با طوری که با افرازی تعداد دانه در هر کیلو، با توجه به تابع سورد میزان فتوستزم بوده، میزان مواد پرورده کمتر در انتخاب این جزء
منابع مورد استفاده

1. امامی، ع. ۱۳۸۲، زراعت علوفت (برایش سوم)، انتشارات مرکز نشر دانشگاه شیراز.
2. بیکانوری، م. و مرزبان، ع. ۱۳۷۹، بررسی روند تغییرات اجتماعی، ۵۰ ساله خصوصیات مورفولوژیک و
 رشد توریستی در برخی گندم های ایرانی، مجله علوم و صنایع کشاورزی، ۲(۱۱۶) ۱۷۱-۱۸۱.
3. مرتضی، ح. و امامی، ع. ۱۳۸۵، رابطه برخی ویژگی‌های فیزیولوژیک با عملکرد دانه در ۱۶ رقم کلرا، مجله علوم و
 صنایع کشاورزی، ۲(۱۱۶) ۱۷۱-۱۸۱.