بررسی سطوح مختلف شوری بر تنظیم کندنه‌های اسمری و فعالیت آنزیم‌های آنتی اسکیدان در رتم سورگوم

صفرها بی‌ی، مصطفی حیدری ۲، نیکه مهدی‌نژاد ۳ و فروع عباسی ۱

(تاریخ دریافت: ۱۶/۰۶/۲۰۱۶، تاریخ پذیرش: ۰۱/۰۶/۲۰۱۶)

چکیده

جهت مقاومت به شوری، گیاهان علاوه بر تنظیم اسمری از مکانیسم افزایش فعالیت آنزیم‌های آنتی اسکیدان نیز استفاده می‌کنند. به منظور بررسی نقش آنزیم‌های آنتی اسکیدان کالاتاز (CAT) و غلیزان پروکسلاز (APX) و جی‌پی‌کسیلاز (GPX) در تنظیم اسمری کربوهیدرات و پروتئین در میزان تحمیل به شوری در رتم سورگوم، آزمایشی به صورت فاکتوریل در قالب طرح کامل نمایشگر با سه تکرار در سال ۱۳۸۶ در مرکز زیست پژوهشی دانشگاه زابل (پیستره) انجام گرفت. میزان آنزیم‌های شوری شده (۰) و ۲۰۰ میلی‌مترال NaCl به عنوان کنترل A و دو رتم سورگوم به ۹۰۰ و ۴۰۰ میلی‌مترال NaCl به عنوان کنترل B در نظر گرفته شدند. نتایج حاصل نشان داد در حالی که سطح شوری از هشت به ۲۰۰ میلی‌مترال NaCl، میزان فعالیت آنزیم‌های آنتی اسکیدان باز گردیده و به سمت بازگشت به سطح چشم‌انداز نسبی از رتم رو به بهبود رسید.

از نظر کلی‌لی: تنظیم آنتی اسکیدان در رتم سورگوم توفیق‌کننده محیط پیشنهادی است (۱۲). در این روش، آنتی اسکیدان‌ها به روشی مهاجم و کنترل‌برنگری نسبت به موارد ردیابی، سطح اکسیداسیون غلیزان و هیدروژن سویور آنزیم (O2) در محیط پیشنهادی و به عنوان یکی از درون‌شیوه‌های نیازمند و مطلوبیتی توسط منابع با رفتار افتراقی، در مقایسه با آزمایش‌های دیگری که با انرژی ریسک‌های خود نگهداری گردید، در این روش از رتم سورگوم با طبقات عالی تفویض نشده و به درستی و بهترین رفتار کننده هستند. این بحث به ادامه واکنش‌های شوری با ویژگی‌های هر آنتی اسکیدانی باید به حساب افزوده شود.

واژه‌های کلیدی: شوری، آنتی اسکیدان، آنزیم‌ها، تنظیم کندنه‌ها، اسمری، سورگوم، تحمیل به شوری

مقدمه

شوری یکی از عوامل مهم کاهش رشد و عملکرد بیماری از گیاهان زراعی به خصوص در مناطق خشک و نیمه خشک دنبال می‌شود. در نتیجه، واکنش گیاهان به شوری رفتار نظم‌ناپذیر در محیط رشد پیشنهادی، سیستم گیاهی و کمبود عناصر غذایی است (۱۲). سیستم گیاهی و کمبود عناصر غذایی می‌تواند (۱۲)

۱. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار زیست شناسی دانشگاه علوم دانشگاه آزاد اسلامی، واحد مشهد
۲. به ترتیب استادیار و مربی زراعت و اصلاح نباتات، دانشگاه کشاورزی، دانشگاه زابل

Haydari2005@yahoo.com

* مسئول مکاتباتی. پست الکترونیکی.
هفته‌ی آزمایشی بررسی تاثیر سطوح مختلف شوری بر میزان فعالیت آنزیمی آنتی‌اکسیدان‌های (H2O2) و رادیکول‌های هیدروکسیل (OH·) در درون سلول شو. این ترکیبات خاصیت زیبایی را از طریق اکسیداسیون چربی‌ها، بروتين و استهلاک نوکلئازه سلول وارد می‌کنند (3).

به مظهری کاهش اثرات سوء نشته‌ای آنتی‌اکسیدان‌های طی بروز نشته شوری، یافته‌ای فعالیت آنزیمی آنتی‌اکسیدان در سلول بعیضی سیستن بالا مد نظر از یافته‌ای می‌توان به کاتالاز، انزیم بروتانیز (APX) و گلیکول (CAT) در این ترکیبات می‌باشد. (۵) و (۶) در بسیاری از گیاهان زراعی مالئیتم کندم (۱۵) و (۱۶) توصیف شد است. بالا رفتن میزان فعالیت آنزیمی در سلول در بروز نشته شوری گزارش شده است. بالا رفتن میزان فعالیت آنزیمی در گیاهان تحت نشته نشته نشته‌ای مکانیسم تحمل به شوری نیست، این مکانیسم می‌تواند در کنار ترکیبات سازگار تصدیق نماید. تحقیق گیاهان بیافرادی (۲ و ۶).

مطالعات بیوشیمیایی نشان داده که در گیاهان تحت نشته شوری در میزان تعداد مولکول‌های (محلولی سازگار کننده) تجربه می‌پذیرد. این ترکیبات تداخلی در فیزیولوژی‌های شیمیایی آنها وارد می‌کند. از این ترکیبات می‌توان به انواعی از کریوهیدراتهای محلول (مالئیتم، سازگار، رافینوز، والکو سازگاری) و ترکیبات نیتروژن (میکروبی، پیداک و گلیفسین - بنیان) اشاره کرد. ترکیبات سازگار کننده نقش مهمی در بهبود تظیم‌های گیاهان تحت نشته نشته دارد (۷ و ۱۶).

در اثر بروز شوری زراعی از جمله سوزنگ در مورد و نکاتی به شوری و تغییراتی که در میزان ترکیبات سازگار کننده آنها و جوی و می‌آید، سوزنگ است که به‌ویژه بین میزان این ترکیبات با مقدار فعالیت آنزیمی آنتی‌اکسیدانا مشخص نیست (۲). این رنگ

matlab and molality

Ice–Cold Extraction

پایه بار

این محلول نیاز مایل محلول بار پتانسیم فسفات 100 میلی‌مولار با

EDTA 0.1 می. محلول pH=7

K2HPO4 و NH2PO4

محلول پتانسیم فسفات از دو مدل

استفاده شدند. جهت تهیه محلول ابتدای محلول 1 مولار از مدرک از این نمک‌ها تهیه می‌شود

کد 25 CC و 26 آنها برداشت. با هم
پرسی مصرف مختلف شوری بر تنظیم کندوهای اسمری و فعالیت آنزیم‌های...

تعداد این آنزیم‌ها افزایش یافته است. این افزایش بروز در سطح شوری 100-100 میلی مولار نسبت به ساده به ترتیب GPX برابر ۷/۵۲/۷۹/۶۳ درصد بود (جدول ۲).

نیل و همکاران (۱۴) اعلام کردند تغییرات در میزان فعالیت آنزیم‌های آنتی-اکسیدان عامل بر تغییرات بیوتی و تنظیم کندوهای اسمری می‌تواند به عنوان یکی از موارد تأثیرگذار نشان شود. بسته به میزان حساسیت کننده، مرحله رشد، شدت و مدت، تغییرات pH مخلوط به حجم ۱۰۰ سی سی رسانده شدند. این محلول

در حد ۷ تنظیم گردد.

TEHIEH MOLVLA

این محلول در حجم ۵۰ سی سی و با غلظت ۲۰ میلی‌متر ساخته شد. برای تهیه فشار ۱۶۰۰ میکروبات از بافر پتاسیم فسفات به همراه ۲۰ میکروبات EDTA برداشت و به حجم ۷۰۰ سی سی رسانده شدند.

جفت اندازه گیری آنزیمها

گرم از بافت سیستم بی‌گری برداشت و با ۴ سی سی بافر سرد کاملاً سایه‌ای به صورت همک طرح داده شدند. محلول همک از کاغذ صافی غور و به مدت ۱۵ دقیقه در ۱۶۰۰ سانتی‌متر فشار سیستم فاز بالایی به عنوان عصاره پروتئینی برای سنجش فعالیت آنزیمی استفاده شد. همه این عملیاتها در دمای ۴ درجه سانتی‌گراد انجام گرفت. در نهایت برای اندازه‌گیری فعالیت آنزیمی CAT (از روش بیبروی سیرز) (۵) آنزیم آسکوربین پراکسیداز (APX) از روش تاکانولا و آسدا (۱۳) و کنیکول پراکسیداز (GPX) از روش اوربا ونک و همکاران استفاده شدند.

به جز برای آنزیم GPX برایCAT در سیستم مورد داده می‌شود. تغییرات در میزان فعالیت CAT در سیستم مورد داده می‌شود.

بحث و تابع

الف) آنزیم‌های آنتی اکسیدان

نتایج تجربی آماری داده‌ها در جدول ۱ نشان می‌دهد. تفاوت معنی‌داری بین ارقام تحسین مختلف شوری و اثر مقابل این دو بر فعالیت آنزیم‌های آنتی اکسیدان کانون (CAT) اسکوربات (۱۳) پراکسیداز (APX) و گیاکائول پراکسیداز (GPX) و جووند در دانل‌بلا رفتین میزان شوری از شاهد به ۲۰۰ میلی‌متر مولار بر میزان فعالیت
جدول ۱. تجزیه و ارایات فعالیت آنزیم‌های آنتی اکسیدان و تغییرات آنزیم‌های اسپزی

<table>
<thead>
<tr>
<th>درجه منابع تغییرات</th>
<th>آزادی H_2O_2 (μmol min$^{-1}$ mg$^{-1}$ prot)</th>
<th>وزن نک بوته</th>
<th>پروپیون</th>
<th>APX</th>
<th>CAT</th>
<th>GPX</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری</td>
<td></td>
<td></td>
<td></td>
<td>0.0057**</td>
<td>0.0017**</td>
<td>0.0020**</td>
</tr>
<tr>
<td>رقم</td>
<td></td>
<td></td>
<td></td>
<td>0.0001**</td>
<td>0.0003**</td>
<td>0.0004**</td>
</tr>
<tr>
<td>شوری × رقم</td>
<td></td>
<td></td>
<td></td>
<td>0.0001**</td>
<td>0.0002**</td>
<td>0.0003**</td>
</tr>
<tr>
<td>شوری × رقم</td>
<td></td>
<td></td>
<td></td>
<td>0.0009**</td>
<td>0.0012**</td>
<td>0.0032**</td>
</tr>
</tbody>
</table>

جدول ۲. مقایسه بیانگین های فعالیت آنزیم‌های آنتی اکسیدان و تغییرات کندوهای اسپزی

<table>
<thead>
<tr>
<th>تیمار</th>
<th>وزن نک بوته</th>
<th>پروپیون</th>
<th>APX</th>
<th>CAT</th>
<th>GPX</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری (میلی مولار)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v/1 b</td>
<td>10/56</td>
<td>0/150</td>
<td>0/38 c</td>
<td>0/62 c</td>
<td>0/41 c</td>
</tr>
<tr>
<td>v/11 b</td>
<td>13/56 b</td>
<td>0/125 b</td>
<td>0/58 b</td>
<td>0/62 b</td>
<td>0/41 b</td>
</tr>
<tr>
<td>v/111 b</td>
<td>18/61 b</td>
<td>0/111 b</td>
<td>0/58 b</td>
<td>0/62 b</td>
<td>0/41 b</td>
</tr>
</tbody>
</table>

تفاوت حروف در هر ستون نشان‌دهنده اختلاف معنی‌دار بر اساس آزمون چند دامنه‌ای دانکن در سطح احتمال ۵ درصد می‌باشد.

نمودار ۱. اثر متقابل مولتی شوری و رقم بر فعالیت آنزیم GPX

GPX
نمودار 2. اثر مقادیر سطوح شوری و ررم بر فعالیت آنزیم APX

در سلول دارد.

نتایج حاصل از داده‌های این آزمایش نشان داد، هم‌بستگی معنی‌دار و مثبت بین میزان فعالیت هر سه آنزیم در طی بروز نش شوری وجود دارد (جدول 3). این امر بیان می‌کند در دو رقم سورگوم مورد مطالعه هر سه نوع آنزیم آناتی اکسیدان با هم فعال شده، سبب کاهش اثرات سوء تنش اکسیدانی بر گیاهان می‌شوند.

نمودار 3. اثر مقادیر سطوح شوری و ررم بر فعالیت آنزیم CAT

در جدول 1 مشاهده می‌شود شوری تأثیر معنی‌داری بر میزان تجمع در نشانه آنزیمی کربوهیدرات و پرولین در بافت سبب بخش هواپیم سورگوم دارد. با بالا رفتن میزان شوری از میزان 200 می‌کند. در این آزمایش دو رقم سورگوم می‌شود. در این آزمایش دو رقم سورگوم از لحاظ

۱۳
جدول 3: همبستگی بین فعالیت آنزیم‌های آتیک اکسیدان و با تنظیم کننده‌های اسپزی

<table>
<thead>
<tr>
<th>وزن بونه</th>
<th>برون‌های APX</th>
<th>برون‌های CAT</th>
<th>برون‌های GPX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.78***</td>
<td>0.27**</td>
<td>0.1</td>
</tr>
<tr>
<td>0.69</td>
<td>0.76**</td>
<td>0.55***</td>
<td>0.16</td>
</tr>
<tr>
<td>0.67</td>
<td>0.69**</td>
<td>0.55***</td>
<td>0.16</td>
</tr>
<tr>
<td>0.67</td>
<td>0.69**</td>
<td>0.55***</td>
<td>0.16</td>
</tr>
<tr>
<td>0.67</td>
<td>0.69**</td>
<td>0.55***</td>
<td>0.16</td>
</tr>
</tbody>
</table>

* و ** به ترتیب نشان‌دهنده معنا داری بودن در سطح 5% و 1% می‌باشد.

فلغطت این دو ترکیب در افرادی نفیسی معنی‌داری با هم بودند به طوری که بالاترین میزان برون‌های مربوط به رقم مخلوط بی‌راری، کربوهیدرات مربوط به رقم پام بود (جدول 1 و 2)。

در زمان فالارگی، این ارقام در معرض سطح مختلف افزایش یافتند. در میزان مولار، فلگطت این دو ترکیب هم زمان افزایش یافت. در این هم‌زمان افزایش غلظت کربوهیدرات در رقم پام بیشتر از رقم برون‌های میلی‌مولار افزایش کربوهیدرات رقم پام نسبت به شاهد معادل 27/8 درصد بود.

در این آزمایش مشخص گردید که رقم پام از حساسیت بین‌ترین نسبت به رقم مخلوط به نشان شوری برون‌های است زیرا در کل درصد افزایش معنی‌دار آن‌تری اکسیداترودی به همراه فلتین به نتیجه کاهش‌هایی اسیدی در آن افزایش بیشتری برون‌های بود. این امر سبب کاهش بین‌تری وزن تک بونه در این رقم گردید. براساس نتایج تجزیه‌های افزایش صورت پیام می‌گذارد بر وزن تک بونه دارد (جدول 1) و با بالا رفتن سطح شوری از وزن تک بونه نسبت به شاهد کاسته شد. در زمان ارقام سورگوم مورد بررسی در این طرح رقم پام از کاهش معادل 55/3 درصد در سطح شوری 200 میلی‌مولار نسبت به شاهد و رقم مخلوط از کاهش معادل 1/6 درصد برون‌های بود (شکل 4). در رقم مخلوط از شوری 100 نا 200 تغییری در کاهش وزن تک بونه دیده گردید و این نتایج با سبب مقاوم
بررسی سطوح مختلف شوری بر تنظیم کنده‌های اصفزی و فعالیت آنزیم‌های...
سیدیم آنها را در واکنش خود بی کار گذاشت. گیاهان هالوفیتی می توانند سدیم و دیگر عناصر حیاتی را در تنظیم اسمری سلول های خود به کار بگیرند، لذا انتزاع زیادی برای تنظیم اسمری در سلول های ریشه خود صرف نمی کنند.

در این آزمایش همیستگی مصنوعی در منظر منفی بین میزان فعالیت آنزیم های آنزیم کسیسادان و ترکیبات آلی تنظیم کننده اسمری (کربوهیدرات و پروتئین) با وزن نک بوته وجود دارد. به طوری که در رژم یپام درصد فعالیت این آنزیم‌ها در بالاترین سطح شوری نسبت به رم محمی بیشتر بود. از طرف دیگر غلظت این دو ترکیب آن نیز در درصد افزایش بیشتری نسبت به رم محمی برخودار بود. بنابراین از وزن نک بوته رضایت به میزان بیشتری نسبت به رم محمی کاسته شد.

شیوه‌ها، تحقیق آزمایشگاهی، روش‌های آزمایشگاهی و امکانات مورد استفاده تأثیرگذار جذب و انتقال عناصر همانند سدیم به شکل تخیالی می‌شوند. برخی از آنها گیاهان هالوفیتی (مقام به شوری) که دارای قابلیت بالایی در تنظیم غلظت عناصر مربوط به مسیر هستند. می‌توانند در طی جذب بالای عناصری همانند

منابع مورد استفاده