بررسی سطوح مختلف شوری بر تنظیم کننده‌های اسوزی و فعالیت آنزیم‌های آنتی اسکیدان در رقم سورگوم

صفورا بیژی، مصطفی حیدری ۲، نفیسه مهیدی‌نژاد ۱ و فراغ عباسی ۱

(تاریخ دریافت: ۱۶اکتبر: ۴۳/۶/۷۸) نخستین پیش‌بردش:

چکیده

جهت مقاومت به شوری، گیاهان علاوه بر تنظیم اسوزی از مکانیسم افزایش فعالیت آنزیم‌های آنتی اسکیدان نیز استفاده می‌کنند. به منظور بررسی نشش آنزیم‌های آنتی اسکیدان کانالاز (CAT) و واکاکول پرپاکسیداز (APX) به‌عنوان فیزیولوژیکی از انواع مختلفی از میزان ناحیه هر سوزی در جدول ۱ نشان داد با بالا رفتن مقدار شوری از ۲۰۰ میلی‌متر بیلما میزان فعالیت بیشتری به همراه شد. در تحقیق حاضر نشان داد که در سطوح شوری بالا، گیاهان با تأثیر مصنوعی بر روی مکانیسم افزایش فعالیت آنزیم‌های آنتی اسکیدان و پروکسیدازات و پروپرولین غلظت از شوری به‌روز می‌گردد. در این بین، در شماله و شرقی میدان‌های زراعتی با شرایط مناسب سطح بیشتری از بیشترین فعالیت آنزیم‌های آنتی اسکیدان را داشتند. بر اساس نتایج این تحقیق، میزان فعالیت آنزیم‌های آنتی اسکیدان در سطوح شوری بالا نسبت به سطوح شوری کمتر، کاهشی نسبی در فعالیت آنزیم‌های آنتی اسکیدان وجود دارد. در این بین، برای ادامه بهترین گیاه‌ها در این حالت قرار می‌گیرد. 

واژه‌های کلیدی: شوری‌های آنتی اسکیدان، نشش آنزیم‌ها، تنظیم کننده‌های اسوزی، سورگوم، ناحیه شوری

مقدمه

میزان شوری‌های سطح‌های نسبی از عوامل مهم کاهش رشد و عملکرد بیماری‌های گیاهان در زراعت به‌خصوص در مناطق خشک و نیمه خشک مناسب بوده است. ایکسیژن دی‌اکسید (O2)، هیدروژن پر (H2O2)، نیتروژن پر (N2O3) و نیتروژن پر (N2O5) از این میزان‌ها بوده است. در این زمینه کاهش یکی از عوامل مهم کاهش رشد و عملکرد بیماری‌های گیاهان گزارش شده است. 

۱. به ترتیب دانشجوی سابق کارشناسی ارشد و استادیار زیست‌شناسی دانشگاه علوم دانشگاه آزاد اسلامی، واحد مشهد
۲. به ترتیب استادیار و مربی زراعت و اصلاح نباتات، دانشگاه علوم دانشگاه آزاد اسلامی
* مسئول مکاتبات: پست الکترونیکی: Haydari2005@yahoo.com
هلف از این آزمایش بررسی تأثیر سطوح مختلف شوری بر میزان اکسید (H2O2) و رادیکالهای هیدروکسی (OH–) در درون سولول شود. این ترکیبات خارصی در دو شرایط اکسیدازکننده آنزیمی، و بروتونئین و اسیدهای نوکلئزیک به سولول وارد می‌کنند (3).

به مفهوم کاهش اثرات سوی نشکن اکسیدازتن در طی بروز تنش شوری. گاهی میزان فعالیت آنزیم‌های آنتی‌اکسیدان در سولول به یک‌تیپی از گیاهان بالا می‌رود. از این آزمایش‌ها می‌توان به کاتاساژ (CAT)، بروکسیداز (APX) و غیب‌کاهن کاتازیک (GPX) اشاره کرد. که این آزمایش‌ها می‌توانند به سبب مهمی در غیرفعال کردن رادیکال‌های آزاد اکسیدهای سولول گیاهان دارند. بستگی به نوع گیاهی و نشکن میزان فعالیت آنها در گیاهان می‌تواند غیر متناسب باشد (1).

در عرضه از گیاهان زراعی همانند گندم (15) و نیله (8) بلافاصله میزان فعالیت این آنزیم‌ها در یک چرخ بروز شوری گزارش شده است. با این‌حال، میزان فعالیت آنزیم‌های آنتی‌اکسیدان در گیاهان تحت تنش نشکن نه‌کانسیم تحمیل به شوری نیست. این مکانیسم می‌تواند در کنار ترکیبات سازگاری کندنده همانند پرولین و کربوهیدراتها مبادر ترکیبات سازگاری (پیافاراید (2 و 6).

مطالعات روی‌شیمیایی نشان داده که در گیاهان تحت تنش حشکی و شوری تعدادی از ترکیبات آلی (محلول‌های سازگاری کندنده) تجمیع می‌بینند. این ترکیبات نشانه‌ی اولین در فرآیندهای شیمیایی آنها وارد می‌شوند. از این ترکیبات می‌توان به انواع از کربوهیدرات‌ها محدود (مانیتون، ساکاراز، رافینوز، و الکو ساکاراید) و ترکیبات نیتروژین (آسید آمین، پرولین و گلیسیان - پیانی) اشاره کرد. ترکیبات سازگاری کندنده نشکن مهمی در بهبود تظیم اسپرم در گیاهان تحت تنش دارند (7 و 12).

در آخر، گیاهان زراعی از جمله سورگوم بررسی‌های معنی‌داری در مورد واکنش به شوری و تغییراتی که در میزان ترکیبات سازگاری کندنده آنها به وجود می‌آید، صورت گرفته است. ولی هنوز به طوری که بین میزان این ترکیبات با نشکن فعالیت آنتی‌اکسیدان مشخص نیست (2). از این رو...
بررسی مسیرهای مختلف شوری بر تنظیم کننده‌های اسیدی و فعالیت آنزیم‌ها...

تمامی این آنزیم‌ها افزوده شد. این افزایش براز در سطح شوری 100 میلی‌مولار نسبت به شاهد به ترتیب GPX برای 70/5 درصد بود (جدول 3).

نیل و همکاران (14) اعلام کردند تغییرات در مزان فعالیت آنزیم‌های آنتی‌اکسیدان علائم بی‌دردسر و تنظیم کننده‌های اسیدی می‌تواند به عنوان یکی از موارد تأثیرگذار تنش شوری بر گیاهان در نظر گرفته شود. بسته به میزان حساسیت گونه گیاهی، میزان شدت و مدت تنش خودت و فعالیت این نوع آنزیم‌ها نیاز به توجه کرد.

فعالیت آنزیم GPX در سطح شوری 2 درصد افزایش یافت. این افزایش براز آنزیم‌های CAT در 77/5 درصد افزایش یافت. این افزایش براز آنزیم‌های CAT در 36/7 درصد بود (جدول 4).

جدول 4. تأثیر آزمایشگاهی و همکاران (6) بر عملکرد آنزیم‌ها در GPX در سطح شوری در بالاترین میزان ملی‌مولار آنزیمی.

نتیجه‌گیری‌ها و گزارش‌ها...


tهیه محلول

این محلول در حجم 50 سی سی و 5 میلی‌لیتر مایع ساخته شد. برای تهیه یافته از Eco-Cold Extraction 1600 میکروولتر از بافر بانستم فسفات به همراه 20 میکروولتر در خوابتا و به حجم 50 سی سی رسانده شد.

تعداد و بیش از 2/5 گرم از بافت سیب برگ برداشت و 6 سی سی بافر در هالو سرد کامل‌سازی شد. به صورت همگن در اورده شدند. محلول همکن از کانال صافی غیر و به مدت 15 دقیقه در 1600 سانتی‌فاز شدند. سپس فاز بالایی به عنوان عصاره پروتئینی در نیل سنجش فعالیت آنزیم‌های استفاده شد. همه این اعمال‌ها در دمای 4 درجه سانتی‌گراد انجام گرفت. در نهایت برای انتقال‌گیری فعالیت آنزیم‌ها (CAT) از روش یافته و (APX) از روش تاکانالو و آسدا (12) و گیاه‌کاری پراکسیداز (GPX) از روش اوربانک و همکاران (18) استفاده شدند.

همچنین جهت انتقال گیاهی پرولین از روش بین و همکاران...

(2) و کربوهیدرات از روش اشلیک (16) استفاده گردید. در SAS نهایت داده‌ها به دست آمده با استفاده از نرم افزار آماری Mord تجزیه واریانس قرار گرفت. مقایسه میانگین‌ها با روش آزمون چند دامنه دانلک در سطح 15/162 کرت گرفت.

نتایج و بحث

الف) آنزیم‌های آنتی‌اکسیدان

نتایج تجربی آماری داده‌ها در جدول 1 تشان می‌دهد. تفاوت محتوای بین ارقام سطح مختلف شوری و اثر مقاول این دو بر فعالیت آنزیم‌های آنتی‌اکسیدان کانالو (CAT) کمیکری می‌باشد. مقدار GPX و پراکسیداز (APX) و گیاه‌کاری (GPX) و وجود دارند. حالت با بالا رفتن میزان شوری از شاهد به 200 میلی‌میلی‌مولار بر میزان فعالیت مخلوط به حجم 100 سی سی رسانده شدند. این محلول در حد 7 نظیه گردید.


Downloaded from jstnar.iut.ac.ir at 9:16 IRST on Thursday December 19th 2019
جدول ۱. تجزیه و اریازس فعالیت آنزیم‌های آتی اکسیدان و تظیم کننده‌های اسیدی

<table>
<thead>
<tr>
<th>درجه متابال تغییرات</th>
<th>آزادي</th>
<th>(μmol H2O2 min⁻¹ mg⁻¹ prot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>شوری</td>
<td>۲</td>
<td>۱/۱۷</td>
</tr>
<tr>
<td>رقم</td>
<td>۱</td>
<td>۰/۱۵</td>
</tr>
<tr>
<td>شوری × رقم</td>
<td>۲</td>
<td>۰/۰۲</td>
</tr>
<tr>
<td>شوری × رقم × CV</td>
<td>۲</td>
<td>۰/۰۲</td>
</tr>
<tr>
<td>متوسط CV</td>
<td>۰/۰۲</td>
<td>۰/۰۲</td>
</tr>
</tbody>
</table>

جدول ۲. مقایسه بیانگی فعالیت آنزیم‌های آتی اکسیدان و تظیم کننده‌های اسیدی

<table>
<thead>
<tr>
<th>تیمار</th>
<th>وزن تک بوته</th>
<th>پروپین</th>
<th>کروپیدرات</th>
<th>APX</th>
<th>CAT</th>
<th>GPX</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(گرم) (میکرومول در گرم وزن ترم)</td>
<td>(میکرومول گلوکز در گرم وزن ترم)</td>
<td>(μmol H2O2 min⁻¹ mg⁻¹ prot)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شوری</td>
<td>۱۰/۰۳</td>
<td>۱۰/۰۳</td>
<td>۱/۵۰</td>
<td>۰/۴۲</td>
<td>۰/۴۲</td>
<td>۰/۴۲</td>
</tr>
<tr>
<td>رقم</td>
<td>۱/۵۰</td>
<td>۱/۵۰</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>شوری × رقم</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۰/۹۶</td>
<td>۰/۹۶</td>
<td>۰/۹۶</td>
<td>۰/۹۶</td>
</tr>
<tr>
<td>شوری × رقم × CV</td>
<td>۲۰۰</td>
<td>۲۰۰</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
<tr>
<td>متوسط CV</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
<td>۰/۰۵</td>
</tr>
</tbody>
</table>

تفاوت حروف در هر ستون نشان دهنده اختلاف معنی‌دار براساس آزمون چند دامنه‌ای دانکن در سطح احتمال ۵ درصد می‌باشد.

نمودار. اثر متقابل سطوح شوری و رقم بر فعالیت آنزیم GPX

GPX
نمودار ۲ اثر مقیار سطوح شوری و رنگ بر فعالیت آنزیم APX

نمودار ۳ اثر مقیار سطوح شوری و رنگ بر فعالیت آنزیم CAT

در سلول دارد. نتایج حاصل از داده‌های این آزمایش نشان داد، همبستگی معنی‌دار و مثبت بین میزان فعالیت هر سه آنزیم در طی پرورش شوری وجود دارد (جدول ۳). این امر باید می‌کند در دو رقم سورگوم مورد مطالعه هر سه نوع آنزیم آنتی‌اکسیدان با هم فعال شده، سبب کاهش اثرات سوء تنش اکسیدانی بر گیاهان می‌شوند.

ب) تنظیم کندن‌های اسکسیز

در جدول ۱ مشاهده می‌شود که تأثیر معنی‌داری بر میزان تجمع دو تنظیم کندن‌های اسکسیز کربوهیدرات و پرولین در بافت سبز بخش هواپیما سورگوم دارد. با بالا رفتن میزان شوری از
جدول ۳ هیپستگین فعالیت آنزیم‌های آتی اکسیدان و با توجه به این اسامی

<table>
<thead>
<tr>
<th>وزن بیوته</th>
<th>APX</th>
<th>CAT</th>
<th>GPX</th>
</tr>
</thead>
<tbody>
<tr>
<td>کربوهیدرات</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شدید</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>بسیار مزکن</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*در این آزمایش هیپستگی معنی‌دار و مثبت بین پرولین با کربوهیدرات بود. در آزمایش‌ها که نشان‌دهنده افزایش در هر دو نوع این ترکیبات آب برای تنظیم اسیدی در گیاه سلورگوم است. (جدول ۳). در تمام بررسی سطح‌های از شاهد به ۲۰۰ میلی‌مولار، فعالیت این دو ترکیب هم‌زمان افراشی باشد. در این افراد غلظت کربوهیدرات در این دو مقایسه در رشته مولار افراشی با ۳۰۰ میلی‌مولار افراشی کربوهیدرات را در مقایسه معادل دوم درصد بود.

برای مقایسه این افراشی در حدود ۲۴/۷ درصد بود. در این آزمایش مشخص گردید که قیمت باین از حسابی بیشتری نسبت به مقایسه بین نش‌شوری با در این دو مقایسه غلظت انرژی اکسیدان به‌مهربان

غلظت این دو ترکیب در این نشان‌دهنده با هم بودند. به‌طوری که بالاترین افراد پرولین مربوط به قیمت سلورگوم و کربوهیدرات مربوط به قیمت باین (جدول ۳).

در زمان فلزیکین این ارقام در معروف سطح مختلف شوری (شکل‌های ۴ و ۵) مشاهده می‌شود. غلظت پرولین در رشته مولار این در تمام است سطح‌های شوری و حتی در سطح شاهد بالاتر از قیمت باین است. اما در این افراد غلظت پرولین در قیمت باین با این مقایسه در سطح شوری (۲۰۰ میلی‌مولار) میزان پرولین آن از افراشی معادل ۶۷ درصد بیشتری در قیمت باین افراد غلظت باین معادل ۲۴/۷ درصد بود. این افراد در شاهد میزان میزان پرولین در رشته مولار افراشی شناسایی است.

محققین مختلف از جمله مارتین و همکاران (۱۶) افراد میزان پرولین در این در بررسی بود.

برنگ تحقیق که شبیه بین پرولین در بنابراین، با کمک کاهش پتانسیل آب و محیط رشته است. در این زمان پرولین با کمک بکاین پتانسیل اسامی

سلول‌های ریشه، شرایط نزدیکی بچه‌ی بچه و عناصر غذایی را فراهم می‌کند. به‌طوری که افراد پرولین در حجم کمی از آب سلول، بکاین‌کل آب در سلول افراشی می‌باشد و این امر

شرایط نزدیکی بچه‌ی بچه و عناصر غذایی را فراهم می‌کند. به‌طوری که افراد پرولین در حجم کمی از آب سلول، بکاین‌کل آب در سلول افراشی می‌باشد و این امر
بررسی سطوح مختلف شوری بر تنظیم کننده‌های اسمزی و فعالیت آنزیم‌های...

شکل ۴. تغییرات کروهیدراد در رنگ سرورگوم در سطوح مختلف شوری

شکل ۵. تغییرات پروپاین در رنگ سرورگوم در سطوح مختلف شوری

شکل ۶. تغییرات وزن تک بوته در رنگ سرورگوم در سطوح مختلف شوری

کود و زاپلانچنسکی (۷) اعلام کرد تنظیم اسمزی با به کارگیری ترکیبات آلی یکی از فرآیندهای سازگاری در گیاهان است که به حفظ پتانسیل تورگر در طی بروز نشان شوری و خشکی چکم می‌کند. این امر مانع‌های هیدراته شدن سلول‌های بودن این رقم نسبت به رقم اصلاح شده پیام است. یکی‌دیگر از دلایل این عدم تغییر مربوط به وابستگی کمتر رقم محلی سیستم به ترکیبات آلی کروهیدراد و پروپاین برای تنظیم اسمزی است. چرا که این ترکیبات برای گیاه هزینه بر هستند.
رشته مهندسی شیمی به‌عنوان ایستگاهی از هر امکان برای ادمیان مکش آب از خط را فراهم می‌گردد. گیاهان با این عمل می‌توانند تا حدی روزانه خود را باز نگه داشته و رشد بی‌گرانه در طی بروز تنفس ادامه بی‌فتد. در این بین هر چه ویژگی‌گیاهان به ترکیبات آلی مانند رولین، کروهیدرات‌ها و اسید‌های آمیزه‌ای با ترکیبات منفی یافتی‌های انرژی از ورود به یک‌طرف و ورود از منطقه ماشین‌سازی و ترکیبات آلی منطقه کننده اسیری (کروهیدرات و پروپیل) با ورود نک بوته وجود دارد. به طوری که در رضم درصد فعالیت این آنزیم‌ها در بالاترین سطح شوری نسبت به رهم محلی بیشتر بود. از طرف دیگر غلظت این دو ترکیب آلی از رد درصد برقی بیشتری نسبت به رهم محلی برخودار بود. بنابراین از ورود نک بوته رضم پیام به میزان بیشتری نسبت به رهم محلی کاشته شد.

منابع مورد استفاده