پرسی تئوری زننیکی جدایی‌های فلور شاه صرف (RAPD) با استفاده از نشانگر

روداه راوش، بهروز شیراو و عزیزالله علیوی و جورج زرواگیس

(تاریخ دریافت: 1387/5/28، تاریخ پذیرش: 1388/1/1)

چکیده

په مانند ریز گونه‌های مختلف آب و هوایی ایران (استان‌های اصفهان، چهارمحال و بختیاری، کهکلیه و بویراحمد، لرستان و فارس) جمع آوری گردیده و جهت تعیین تئوری‌های منطقه‌ای از نشانگر RAPD مولکولی استفاده گردید. با استفاده از 10 آنالیز تصادفی از واکنش PCR و ۲۰ رژیم شناختنپذیری و پس از واکنش PCR از واکنش PCR RAPD مولکولی استفاده شد. به‌روزیک ۱۸۲ میکروویسکلی نشان دادند که بر اساس گیاهان همزیست و مناطق جغرافیایی آنها اثر دارد و برای این هدف، استفاده از نشانگر RAPD از نشانگر GenBank و نسبتاً قابل پیش‌بینی می‌باشد.

واژه‌های کلیدی: تئوری زننیکی، نشانگر RAPD، فلور شاه صرف (Pleurotus eryngii) میزان اختصاصی (Pleurotus eryngii) مقدمه

قارن شاه صرف (Pleurotus eryngii) یکی از گونه‌های خوراکی از خانواده Agaricomycetes و تیره Agaricus (Basidiomycota) می‌باشد. به‌طور کلی، به‌عنوان یکی از گونه‌های شمال اروپا، شمال آفریقا و آسیای می‌تواند در جنگل‌ها، نواحی خشک و پودر از این گونه در حوزه مدیریت اروپا، شمال آفریقا، آسیای می‌تواند در جنگل‌ها، نواحی خشک و پودر از این گونه در حوزه مدیریت اروپا، شمال آفریقا، آسیای می‌تواند در جنگل‌ها، نواحی خشک و پودر از این گونه در حوزه مدیریت

1. به‌ترتیب دانشجوی سابق کارشناسی ارشد و دانشیار از بزرگداشت شاهزاده شهرکرد
2. استادیار باغبانی، دانشگاه کشاورزی، دانشگاه شهرکرد
3. استاد باغبانی، استاد بیزی‌شناسی، استاد بیزی‌شناسی، استاد بیزی‌شناسی
4. مسئول مکاتبات، پست الکترونیکی: azizollaalavi@yahoo.com

729
روشن کردن طبقه‌بندی و ارزیابی نوع زنگیتیک می‌شناسند P. eryngii مرتبه با پاتک در نمونه‌های آن و Pluteus خصوصیات این ارتباط محور انتخاب می‌نماید. این نمونه‌های شاخصی با روش تکنیک‌های موارد انتخاب داده‌است. این موقعیتی به‌طور کلی خاصیت اختصاصی و رابطه مشکل بوده است. منابع لیوان و مهارتان (6) نیز با استفاده در انتخاب مهارت P. eryngii انتخاب شده. فاصله زنگیتیک میان جمعیت‌ها رابطه مشابه با فاصله زنگیتیک نمونه داد که به‌طور خاص

همساختی مکانیکی نکاردهای مهم‌ترین واکنش‌های برای عضویت شماره‌گذاری گردید.

مباحثی مکانیکی نکاردهای مهم‌ترین واکنش‌های برای عضویت شماره‌گذاری گردید.

محلول آزمایشگاهی

نمونه‌ها بس از جمع آوری به آزمایشگاه منقول و در دمای 40°C در نمایدار شدند. برای تفاوت سازی نمونه‌ها و بهبود آن‌ها می‌باشد. آزمایشگاهی جداگانه استفاده از روش RAPD-PCR در 24 جمعیت (44) جدایی (P. eryngii) از مورد تعداد نمونه‌ها به‌طور مختلف پرتاب شده و سپس آزمایشگاهی جداگانه استفاده از مجموعه شامل

بررسی سرعت رشد رویشی و خصوصیات

P. eryngii ریخت‌شنایی جدایی‌های به‌منظور بررسی سرعت رشد رویشی قارچ از هر جدایی، به تکرار در نظر گرفته شد و در پک زمان از تمام جدایی‌ها، نمونه‌برداری انجام شد. به این صورت که قسمت کوچکی از بافت میلیشیوم درست و نوشته‌سازی یکی برای داده‌شده. مسیس 25°C در طرح کامل نام‌گذاری و از نمونه‌برداری کرده‌اند، آزمایش در تصویر گرفته شد. برای بررسی میزان رشد جدایی‌ها، قطر پرگنه‌های شکل‌دهنده در دو جهت، به طور روندی و به‌وسیله خطکش، انتخاب گردید و بر

آن اساس سرعت رشد آنها محاسبه شد. تجزیه و تحلیل آماری با استفاده از نرم‌افزار SAS 6.12 انجام شد، همچنین برای مقایسه میانگین‌ها از آزمون دانکن استفاده شد (جدول 3).

RAPD-PCR استخراج DNA و انجم و ااجک

DNA از خالص صاپی نمونه‌ها، برای استخراج

قارچ به مقدار زیادی میلیشیوم نیاز است که برای اجک

زمینه‌های مبهمه، سپس به استان فارس (شکل 1).

محدودیت‌های در ضرایب جدایی‌های در روش انتخاب

اجک

جمع آوری جدایی‌های قارچ P. eryngii جنس

ارییالی فقط با چندین میانه گونه‌های آن و همچنین ارییالی‌ای اشکال میانه‌های کلوژیک و

راجیدیت آزمایشگاهی به‌طور انتخابی است. این سطح به فرامینت انتخاب تعداد نمونه‌ها به‌طور انتخابی میزانی اختصاصی نزدیک‌تری به جهت از آن‌ها RAPD-PCR مطابق است. تکنیک RAPD-PCR ممکن است، با توجه به همکار که

اجک

بیان‌کننده از قارچ‌ها که بررسی آنها به‌وسیله نشانگران دیگر مشکل بوده است. ممکن می‌باشد. لیوان و مهارتان (6) نیز با استفاده در انتخاب مهارت P. eryngii انتخاب شده. فاصله زنگیتیک میان جمعیت‌ها رابطه مشابه با فاصله زنگیتیک نمونه داد که به‌طور خاص

همساختی مکانیکی نکاردهای مهم‌ترین واکنش‌های برای عضویت شماره‌گذاری گردید.

مباحثی مکانیکی نکاردهای مهم‌ترین واکنش‌های برای عضویت شماره‌گذاری گردید.

محلول آزمایشگاهی

نمونه‌ها بس از جمع آوری به آزمایشگاه منقول و در دمای 40°C در نمایدار شدند. برای تفاوت سازی نمونه‌ها و بهبود آن‌ها می‌باشد. آزمایشگاهی جداگانه استفاده از روش RAPD-PCR در 24 جمعیت (44) جدایی (P. eryngii) از مورد تعداد نمونه‌ها به‌طور مختلف پرتاب شده و سپس آزمایشگاهی جداگانه استفاده از مجموعه شامل

بررسی سرعت رشد رویشی و خصوصیات

P. eryngii ریخت‌شنایی جدایی‌های به‌منظور بررسی سرعت رشد رویشی قارچ از هر جدایی، به تکرار در نظر گرفته شد و در پک زمان از تمام جدایی‌ها، نمونه‌برداری انجام شد. به این صورت که قسمت کوچکی از بافت میلیشیوم درست و نوشته‌سازی یکی برای داده‌شده. مسیس 25°C در طرح کامل نام‌گذاری و از نمونه‌برداری کرده‌اند، آزمایش در تصویر گرفته شد. برای بررسی میزان رشد جدایی‌ها، قطر پرگنه‌های شکل‌دهنده در دو جهت، به طور روندی و به‌وسیله خطکش، انتخاب گردید و بر

آن اساس سرعت رشد آنها محاسبه شد. تجزیه و تحلیل آماری با استفاده از نرم‌افزار SAS 6.12 انجام شد، همچنین برای مقایسه میانگین‌ها از آزمون دانکن استفاده شد (جدول 3).

RAPD-PCR استخراج DNA و انجم و ااجک

DNA از خالص صاپی نمونه‌ها، برای استخراج

قارچ به مقدار زیادی میلیشیوم نیاز است که برای اجک
اکسپرسیون مولکولاری انجام گردید.

 و اکتیویت زنجیره‌ای پلیمراز براساس روش ویلیامز و PCR همکاران (11) با تغییر جزیی انجام شد. شرایط دماهای DNA عبورت بود از: و اکتیویتی شدن اولیه 3 دقیقه در دمای 94 درجه سانتی‌گراد، که از دمای 94 درجه سانتی‌گراد (مرحله و اکسپرسیون شدن)، 1 دقیقه در دمای 72 درجه سانتی‌گراد (مرحله اضافه و 2 دقیقه در دمای 72 درجه سانتی‌گراد) بسته) ادامه می‌یافت و در نهایت 10 دقیقه در دمای 72 درجه سانتی‌گراد مخلوط DNA واکنش نهایی انجام می‌شود. تکثیر PCR با تغییر در ظرفیت نهایی 1× بافر DNA 250 میلی‌مول Mخلوط Taq 15 نانومول برای 18 ثانیه، 4 مول مخلوط dNTPs بایت مرز و 15 نانومول انجام گردید. فراورده‌های PCR حاصل از تکثیر PCR در زل آگار 1/2 درصد در بافر TBE و اسپرولوتومی انجام گرفت.

عبارت بود از: و اکتیویتی شدن اولیه 3 دقیقه در دمای 94 درجه سانتی‌گراد، که از دمای 94 درجه سانتی‌گراد (مرحله و اکسپرسیون شدن)، 1 دقیقه در دمای 72 درجه سانتی‌گراد (مرحله اضافه و 2 دقیقه در دمای 72 درجه سانتی‌گراد) بسته) ادامه می‌یافت و در نهایت 10 دقیقه در دمای 72 درجه سانتی‌گراد مخلوط DNA واکنش نهایی انجام می‌شود. تکثیر PCR با تغییر در ظرفیت نهایی 1× بافر DNA 250 میلی‌مول Mخلوط Taq 15 نانومول برای 18 ثانیه، 4 مول مخلوط dNTPs بایت مرز و 15 نانومول انجام گردید. فراورده‌های PCR حاصل از تکثیر PCR در زل آگار 1/2 درصد در بافر TBE و اسپرولوتومی انجام گرفت.

(Complete Yeast Medium) CYM مایع استخراج DNA زنومی با استفاده از ریسه فارم طبق دستورالعمل راجر و بندیج (9)، انجام شد. بدین مانند 15/1 نا 2/5 گرم مسیلویم قارچ در زتل مایع به بودر تبدیل شد و با مقدار 0.5 میلی‌مول NaCl 750-750 بافر استخراج (pH=8) Tris-HCl 50 میلی‌مول، 0.5 میلی‌مول SDS، 2/3 وزن به حجم و 50 میلی‌مول Na2EDTA 0/1 میلی‌گرم بر میلی‌لیتر مخلوط میشود و به مدت یک ساعت در 65 درجه سانتی‌گراد و نهایتاً عمل خالص سازی با استفاده از تبیار RNaseA الوان کشی کارفرم و آیزوآمیل DNA انجام گرفت. خالص پس از رسوپ با اندازه‌گیری DNA میکروپترین از DNA کفی و کمی با در روش الکتروفورز زل آگار و روش PCR ماکس می‌باشد.

Pleurotus eryngii در این تحقیق
گیاهان مزیتای این جدایی‌ها عبارت‌بودند از Prangus ferulacea (کم‌ما) Ferula ovina (پیکل) (کرفس کوچه) و Ferula (جاشیری) Kellusia odoratissima (انگزه) (جدول ۱). برابر اساس داده‌های بدست اخذ شده و تعداد ۲۰ فرآوری مولکولی RAPD (آنومالی) و Arlequin ver 2.000 ۷۲ نمونه‌تایی در نرم‌افزار Amova انجام شد.

نتایج و بحث

Smyrnioptis و Ferulae انجام شد

در این تحقیق جهت اندازه‌گیری واکنش بیشترین آغازگر برای تکثیر فراورنده شده بود، مورد ارزیابی قرار گرفت. که از این تعداد ۲۰ آغازگر برابر با ۷۴٪ نمونه‌ها درصد با شده انتخاب شد. در آغازگر برای تشکیل قطعی بودن. ۹۱٪ پرگانها با یک نمونه‌دار صاف، منظم و نرمال منظم

میزان لبیز ۳۲۴ نمونه (تیره) در مجموع خصوصیات ریخت‌شناسی، بهینه‌سازی و سرفه خاک‌سازی و سرفه بدن‌شان به روز. توانای مشابه تهیه فنون تفاوت‌های ریخت‌شناسی در میان گروه‌های طبقه‌بندی شده برابر اساس خصوصیات جغرافیایی
جدول 1. گیاهان میزان مربوط به 25 جدایی فارچ شا کردن

| نام گیاه اصلی | نام گیاه دیگر | گیاهان میزان یافته‌شده
|----------------|----------------|-------------------------|
| Pleurotus eryngii | Ferula ovina | (کم) | 0.1(10)
| | Prunus ferulacea | (خاشی) | 0.1(11)
| | Kooy Rek 1 (8.1) | سردرشت و مکانس "(5) | 0.1(19)
| | Smyrnopsis aucheri | (پیکل) | 0.1(19)
| | Kellusia odoratissima | (کرفس کوهی) | 0.1(19)
| | Ferula assa-foetida | (انگوره) | 0.1(19)

*ناواحی کوه ریگ، سردرشت و منگاسه جزو منطقه لرگان محسوب می‌شوند.

جدول 2. آغازگرهای مورد استفاده در واکنش RAPD-PCR مربوط به بررسی نوع زنیکی

| نام آغازگر | تعداد لنوکس‌های گردش دیده | تعداد لنوکس‌های چند شکل | تعداد لنوکس‌های چند شکل دیده (جفت باز)
|----------------|----------------|----------------|----------------|
| OPG 05 | 15 | 15 | 100 2700-3000
| OPG 07 | 16 | 16 | 100 2500-2700
| OPG 08 | 9 | 9 | 100 3700-3000
| OPG 10 | 17 | 17 | 100 4800-5000
| OPG 19 | 17 | 17 | 100 5250-5500
| OPG 44 | 21 | 21 | 100 5500-5700
| OPG 47 | 12 | 12 | 100 5700-5900
| OPG 52 | 15 | 15 | 100 6250-6500
| OPG 58 | 14 | 14 | 100 6500-6800
| OPG 68 | 16 | 16 | 100 6800-7100
| کل | 150 | 150 | 100 2500-3000

و یا غیر تکراری بودن حذف شده‌اند. همچنین دو مکان زنی تک شکلی تشکیل دادند. که در مطالعات آماری از آنها استفاده شدند (جدول 2).
جدول 3. مقایسه میانگین‌های سرعت رشد رویشی جدایی‌های P. eryngii با روش دانکن

<table>
<thead>
<tr>
<th>شماره</th>
<th>جدایی (میلی‌متردرزور)</th>
<th>شماره</th>
<th>جدایی (میلی‌متردرزور)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>سپیدان 5</td>
<td>C2</td>
<td>سپیدان 1</td>
</tr>
<tr>
<td>C3</td>
<td>سپیدان 1</td>
<td>C4</td>
<td>فریدان 10</td>
</tr>
<tr>
<td>C5</td>
<td>فریدان 10</td>
<td>C6</td>
<td>فریدان 5</td>
</tr>
<tr>
<td>C7</td>
<td>فریدان 5</td>
<td>C8</td>
<td>فریدان 5</td>
</tr>
<tr>
<td>C9</td>
<td>فریدان 5</td>
<td>C10</td>
<td>فریدان 5</td>
</tr>
<tr>
<td>C11</td>
<td>فریدان 5</td>
<td>C12</td>
<td>فریدان 5</td>
</tr>
<tr>
<td>C13</td>
<td>فریدان 5</td>
<td>C14</td>
<td>فریدان 5</td>
</tr>
<tr>
<td>C15</td>
<td>فریدان 5</td>
<td>C16</td>
<td>فریدان 5</td>
</tr>
<tr>
<td>C17</td>
<td>فریدان 5</td>
<td>C18</td>
<td>فریدان 5</td>
</tr>
<tr>
<td>C19</td>
<td>فریدان 5</td>
<td>C20</td>
<td>فریدان 5</td>
</tr>
<tr>
<td>C21</td>
<td>فریدان 5</td>
<td>C22</td>
<td>فریدان 5</td>
</tr>
<tr>
<td>C23</td>
<td>فریدان 5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

گروه دوم بیشتر بر اساس شیب های اقلیمی دسته‌بندی شده‌اند

P. eryngii نمونه‌هایی در حدود 25 جدایی‌های قرار گرفته‌اند، از آن‌ها برای NTsys و NTsys واکنش‌های تحقیقاتی در UPGMA نشان داده شد. این نتایج نشان می‌دهد که گروه‌هایی داشته باشند که به‌طور کلی با یکدیگر به‌طور مشابه روش‌های فیزیکی

Ferula ovina و Prangus ferulacea تحقیقاتی می‌شوند. نتایج این تحقیق به‌طور کلی نشان می‌دهد که گروه‌هایی دارای جدایی‌های بازداشتی می‌باشند که به‌طور کلی با یکدیگر به‌طور مشابه روش‌های فیزیکی

کیفیت‌های مختلف آنها داده‌هایی دارد. ضریب همبستگی کوئینکیتیک 91/99 و آماره 1 مدل 42/32 به‌مدت آمد.
بررسی تنوع زننیک چاده‌های فارس شاه صدف (Pleurotus eryngii)

شکل ۲. گروه‌بندی چاده‌هایی بر اساس ضریب تشابه چاکارد و با استفاده از روش UPGMA

Pleurotus eryngii

شکل ۳. نمودار بوت شرایط برای چاده‌هایی
شکل 2. گروه‌بندی ۴۵ جدایه فارغ شاه صدف بر اساس SPSS11

سرعت رشد با استفاده از نرم افزار SPSS11

شکل ۳. انگوری باندی تکثیر شده از DNA جدایه‌های 
Pleurotus crypogi
با استفاده از آغازرگه‌های OPG44 و OPG68 (a) - (b) 

شماره هر چاهک نشان‌دهنده شماره هر جدایه و حرف M معرف نشانگر اندازه است.

(c) OPG10
| جدول ۲. آنالیز واریانس مولکولی (AMOVA) برای ۴۵ جدایی
<table>
<thead>
<tr>
<th>مواد اولیه</th>
<th>درصد واریانس کل</th>
<th>درجه آزادی</th>
<th>مجموع مربعات</th>
<th>بین جمعیت ها</th>
<th>داخل جمعیت ها</th>
<th>کل</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸/۶۷</td>
<td>۷۸/۷۷</td>
<td>۵۴/۷۴</td>
<td>۲۸/۶۷</td>
<td>۲/۲۷</td>
<td>۲/۲۷</td>
<td>۲/۲۷</td>
</tr>
<tr>
<td>۷۱/۳۳</td>
<td>۴۹/۲۵</td>
<td>۴۹/۲۵</td>
<td>۷۱/۳۳</td>
<td>۲/۲۷</td>
<td>۲/۲۷</td>
<td>۲/۲۷</td>
</tr>
<tr>
<td>۷۲/۶۱</td>
<td>۴۹/۲۷</td>
<td>۴۹/۲۷</td>
<td>۷۲/۶۱</td>
<td>۲/۲۷</td>
<td>۲/۲۷</td>
<td>۲/۲۷</td>
</tr>
</tbody>
</table>

که نشان دهنده بررسی خیلی خوب بین دندوکوپم و متاسف

شیب‌های اصلی است.

بر اساس تجزیه و تحلیل واریانس مولکولی (AMOVA), واریانس داخل
جمعیت ها ۷۱/۳۳٪ و واریانس بین جمعیت ها ۲/۲۷٪ براورد

شد. است (جدول ۲). در اینجا واریانس درون جمعیت ها

بیشتر از واریانس بین آنها براورد شده است. همین

نتایج از آزمون‌های لوپسون و همکاران (۶) و اوربانالی و همکاران

(۷) روی نوع زنیکی جدایی‌های P. eryngii به‌مدت آمد

است. این گونه نیز یک نوع زنیکی، نتیجه سطح بالای

جریان زنی (Gene flow)، به‌وسیله انتشار مؤثر باربیوسپرهای

و پروژه ساز و کار دکترسی. است. این وقایع باعث محدود

شد خوش‌آمیزی درون جمعیت ها و افزایش تنواع در داخل

جمعیت ها می‌گردد. تاریخچه جمعیت ها و سیستم زادآوری

برای خیلی هم تکاملی با گیاه میزان دیجنت بالای

تراکم. که در این جدایی ها ایجاد می‌کند (۱۵). برای تعیین دان

منابع مورد استفاده

1. صفری، م. ۱۳۶۳. نشان‌دهنده گروهی گیاهی ایران ۲۶: ۱۱۶-۱۲۷.

2. محمدی کل جهانی، و. ۱۳۸۳. اصول بایوزماژر گروه‌های کشف‌کننده. تهران.


