مقایسه برخی شاخص‌های فنی در روش‌های کم‌خاکورزی و خاکورزی مرسوم

الیاس دهقان1 و مرتضی الماسی2

(ناریان دریافت: ۱۳۸۷/۱۲/۲۴ تاریخ پذیرش: ۱۳۸۷/۱۳/۲۴)

چکیده

مقدمه

روش خاکورزی غلبان کننده نوع ماشین‌ها و ادوات به‌کار رفته بوده و دارای روش‌های تعیین شده و گاه تعیین نشده‌ای است که به‌همراه شرایط آب و هوا و فیزیکی و شیمیایی خاک، تغییر متحمل یافته و هم‌زمان و نوع ماشین‌ها و ادوات در اختیار دارای آثار سودمند و گاه زیان‌بردار است. سختی انجام کار و انرژی‌خواه بودن عملیات آماده‌سازی

زمین باعث شده تا درجه ماکنورزیون برای خاکورزی در اکثر مناطق ۱۰۰٪ است (۱). طبق تحقیقات انجام شده در حدود ۶۲٪ از انرژی مکانیکی در کشاورزی مکانیزه برای عملیات خاکورزی مصرف می‌گردد (۱۳). همچنین خاکورزی، سهم قابل توجهی در هزینه تولید محصولات کشاورزی دارد. بر اساس آمار وزارت کشاورزی، سهم هزینه آماده‌سازی زمین‌های کلیه هزینه‌های تولید محصول در خوزستان در سال ۱۳۸۵-۱۳۸۶ برابر با ۵۰٪ و در حدود ۶۰٪ بوده‌اند.

1. عضو هیئت علمی بخش تحقیقات فنی و مهندسی، مرکز تحقیقات کشاورزی و منابع طبیعی خوزستان
2. استاد مهندسی مکانیک ماشین‌های کشاورزی و ماکنورزیون، دانشگاه کشاورزی، دانشگاه شهید چمجرد اهواز
elyas_dehghan@yahoo.com

* مسئول مکاتبات. پست الکترونیکی.
روش نموده که بیشترین بازده مصرف مواد و انرژی بهترین بهینه‌سازی از دیسک‌ها، روتاتور و گاورهای برق‌گیر و گاز‌گیری برگرداندار به‌دست آمده (15). ولی مقایسه روش‌های خاوروزی مرسوم و حفاظتی توسط برخی دیگر از پژوهشگران نشان داد که خاوروزی حفاظتی در بخشهای منطقه از نظر اقتصادی مقرن به صرف نیست (16، 17 و 22).

سکبتی و آبل به بررسی اثر روش خاوروزی 1-شخم
برگردان دوبار دیسک، 2-خاوروزی سطحی با خاوروزی دوار و 4-یکبار دیسک، 3-دوبار دیسک و 4-یکی از دیسک‌ها و 5-عملکرد گردیدن در یک خاور رسمی لومید در تحقیق گزارش نمودن که بیشترین مقدار MWD به‌صورت توزیع خاوروزی با دیسک، خاوروزی شش‌شکم برگردان + دیسک دوباره و خاوروزی دوار + یکبار دیسک و MWD به‌دست آمده. آنها همچنین گزارش نموده که افزایش زمان کل کلکش‌ها به‌عنوان کاهش جوانه‌زی بذرهای گندم شده (17). روزهی و لفیت نیز به بررسی روش‌های خاوروزی اولیه با گاورهای مدل که برفصل بریسبان و نانوی با دیسک و خاوروزی دوار در تاریکی گزارش نموده که این اقدار قطع متوسط و تنهاً کلکش‌ها در روش‌های خاوروزی ثانویه بی‌سیار دیسک و یکبار خاوروزی در برپایی می‌کند (6).

انتخاب روش خاوروزی و مدیریت و برنامه‌ریزی عملیات آماده‌سازی زمین برای کشت محصولات مختلف در منطقه نیازمند دسترسی به شاخص‌ها و اطلاعاتی در مورد شرایط، چگونگی، مرز و معادل انجام روش‌های گوناگون خاوروزی است. در بررسی روش‌های خاوروزی، بیشتر به به‌اشتراک و شرایط، شاخص‌های گوناگونی مانند هریمه عملیات، میزان مصرف سوخت و انرژی، فشرددگی خاک و نرم مخصوص خاوروزی سوخت و انرژی، فشرددگی خاک و نرم مخصوص

برای گندم، جو، ذرت و برنج به‌ترتیب برای 5/11، 11/18 و 12/02 درصد بود (23). گسترده‌گی عملیات خاوروزی و هزینه‌های الیه آن از دیگر ترفند آثار زیبای خاوروزی بیش از حد و نامحسوس، نشان دهنده ضرورت بررسی

و بازنشر در روشهای آماده‌سازی زمین است.

استفاده از ماسک‌ها و ادوات گوناگون خاوروزی اثر متفاوتی روی خاک، گیاه و بقایای گیاهی بر جای می‌گذارند. در سیستم کم‌خاوروزی بقایای گیاهی تا حدود زیادی در سطح خاک بقای می‌مانند، لذا وجود بقایای می‌تواند در عملیات بهبود و کاملاً بسته بودن اختلال بی‌نیاز نمود. بیش از ادوات مناسب، برای کار در این گونه زمین‌های کولینوتوپ هنگام غذا است.

کولینوتوپ‌ها سبک مرحله‌ای از جهولی و سبک مرحله‌ای در عمل‌های تمرکز 10-12 ساعت متری طراحی شده‌اند (24). کولینوتوپ‌ها بیشتر بقایای گیاهی را در سطح خاک به‌جای گذاشته با آنها را تا عمل چند ساعت می‌تری با خاک سطحی مخلوط می‌کنند (16). بررسی آثار دیسک بی‌فرشته، دیسک خاک در یک خاک رسی و مقایسه آن با سایر روش‌های خاوروزی نشان داد که در خاوروزی با دیسک، بین را این که یکی که دوره و سختی در زیر

لاهای شکم ایجاد گرده یکنواختی نشان حجم خاک حفظ می‌شود. همچنین خاوروزی با دیسک علاوه بر این که ماهی فشرددگی دیسک زیر، به‌نظر می‌رسد باعث جلوگیری از فرودنی تاریکی در اندازه‌گیری خاک‌های نمی‌شود (19).

کاورهای دوبار به‌طور هم‌زمان جای گاوانه، دیسک و دیگر هرگاه گرفته و پس از ابزار از سطح خاک هیچ گونه شیر یا پشت‌های برآوری نمی‌گذارند (20).

نتایج پژوهش‌های انجام شده در دنبال روش‌های خاوروزی برای محصولات گوناگون نشان داده است که به شرایط محلی، امکانات و اهداف، هر یک از روش‌های خاوروزی مرسوم (15، 16 و 20) خاوروزی کهنه (12، 13 و 14) و یکی خاوروزی (16) می‌توان بر دیدگاه‌های داشته باشد.

مقایسه روش‌های خاوروزی توسط خیرالله و همکاران

680
مواد و روش‌ها

این آزمایش در تابستان سال ۱۳۸۲ در یک خاک رسی حاره‌ای پیام‌گذاری کرد که تحقیقات کشاورزی شاور و انجام شد. این تحقیقات کشاورزی شاور در فاصله ۷۰ کیلومتری شمال اهواز واقع شده است. خاک‌های این منطقه غالباً از نظر مواد آلی و اثر فیبر هستند. از نظر آب و هوایی نیز این منطقه دارای اقلیم خشک و نیمه خشک بوده و میانگین سالانه دما و بارندگی آن به ترتیب ۲۳ درجه سلسیوس و ۲۴۶ میلی‌متر می‌باشد. مشخصات خاک محل اجرای آزمایش در جدول ۳ آورده شده است.

در این تحقیق روش خاک‌وزی مرسوم و پنج روش کم‌خاکیزی در قالب طرح بلوک‌های کامل تصادفی در سه تکرار مورد مقایسه و ارزیابی قرار گرفتند. تیم‌های خاک‌وزی عبارت بودند از:

۱- روش مرسوم یک بار گاوانه‌ای برگرداند به عمق ۱۰ سانتی‌متر
۲- دو بار گاوانه‌ای به عمق ۷/۵ سانتی‌متر
۳- دو بار گاوانه‌ای به عمق ۵ سانتی‌متر
۴- دو بار گاوانه‌ای به عمق ۳ سانتی‌متر
۵- دو بار گاوانه‌ای به عمق ۱ سانتی‌متر

نظرات و مقاومت تقویتی خاک، فرسایش‌پذیری و آبی، درصد برگدان پیمان‌گذاری که به در جدول ۳ آورده شده است.

مواد و روش‌ها

این آزمایش در تابستان سال ۱۳۸۲ در یک خاک رسی حاره‌ای پیام‌گذاری کرد که تحقیقات کشاورزی شاور و انجام شد. این تحقیقات کشاورزی شاور در فاصله ۷۰ کیلومتری شمال اهواز واقع شده است. خاک‌های این منطقه غالباً از نظر مواد آلی و اثر فیبر هستند. از نظر آب و هوایی نیز این منطقه دارای اقلیم خشک و نیمه خشک بوده و میانگین سالانه دما و بارندگی آن به ترتیب ۲۳ درجه سلسیوس و ۲۴۶ میلی‌متر می‌باشد. مشخصات خاک محل اجرای آزمایش در جدول ۳ آورده شده است.

در این تحقیق روش خاک‌وزی مرسوم و پنج روش کم‌خاکیزی در قالب طرح بلوک‌های کامل تصادفی در سه تکرار مورد مقایسه و ارزیابی قرار گرفتند. تیم‌های خاک‌وزی عبارت بودند از:

۱- روش مرسوم یک بار گاوانه‌ای برگرداند به عمق ۱۰ سانتی‌متر
۲- دو بار گاوانه‌ای به عمق ۷/۵ سانتی‌متر
۳- دو بار گاوانه‌ای به عمق ۵ سانتی‌متر
۴- دو بار گاوانه‌ای به عمق ۳ سانتی‌متر
۵- دو بار گاوانه‌ای به عمق ۱ سانتی‌متر

نظرات و مقاومت تقویتی خاک، فرسایش‌پذیری و آبی، درصد برگدان پیمان‌گذاری که به در جدول ۳ آورده شده است.

مواد و روش‌ها

این آزمایش در تابستان سال ۱۳۸۲ در یک خاک رسی حاره‌ای پیام‌گذاری کرد که تحقیقات کشاورزی شاور و انجام شد. این تحقیقات کشاورزی شاور در فاصله ۷۰ کیلومتری شمال اهواز واقع شده است. خاک‌های این منطقه غالباً از نظر مواد آلی و اثر فیبر هستند. از نظر آب و هوایی نیز این منطقه دارای اقلیم خشک و نیمه خشک بوده و میانگین سالانه دما و بارندگی آن به ترتیب ۲۳ درجه سلسیوس و ۲۴۶ میلی‌متر می‌باشد. مشخصات خاک محل اجرای آزمایش در جدول ۳ آورده شده است.

۶۸۱
جدول ۱. مشخصات خاک استفاده شده تحقیقات کشاورزی شاور

<table>
<thead>
<tr>
<th>عنصر میکرو و قابل حذف</th>
<th>(mg.kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC (%)</td>
<td>۰/۸</td>
</tr>
<tr>
<td>P (mg.kg⁻¹)</td>
<td>۷/۵</td>
</tr>
<tr>
<td>K (mg.kg⁻¹)</td>
<td>۲۲۰</td>
</tr>
<tr>
<td>EC (ds.m⁻¹)</td>
<td>۳/۱</td>
</tr>
<tr>
<td>PH</td>
<td>۶/۲</td>
</tr>
<tr>
<td>بافت ناحیه</td>
<td>۳۴۰</td>
</tr>
<tr>
<td>عمق خاک (cm)</td>
<td>۴۰-۶۰</td>
</tr>
</tbody>
</table>

جدول ۲. ویژگی‌های ماسه‌ها و ادوات مورد استفاده در آزمایش

<table>
<thead>
<tr>
<th>خاصیت</th>
<th>شرکت سازنده و مدل</th>
<th>نام دستگاه</th>
<th>کاربرد</th>
</tr>
</thead>
<tbody>
<tr>
<td>سرعت (km/h)</td>
<td>۱۱۵ سوار</td>
<td>هیدرومکتراکتور</td>
<td>۴-۶</td>
</tr>
<tr>
<td>عرض کار (cm)</td>
<td>۸۵۰</td>
<td>هیدرومکتراکتور</td>
<td>۵-۷</td>
</tr>
<tr>
<td>تراکتور</td>
<td>۳۰۰</td>
<td>فعال محور عقب</td>
<td>۶-۲</td>
</tr>
</tbody>
</table>

زمان مناسب خاکوزی، نمونه‌برداری از خاک از عمق‌های ۰-۲۰ در سال‌های ۱۵ و ۳۰ سانتی‌متر انگشتر و رطوبت خاک و میانی وزن خاک خشک محاسبه شد. درصد رطوبت خاک در زمان عادی تیمارهای خاکوزی مرسوم (شکم) دیسک، کولوبانور و گاه در بیشتر بوده، با توجه به توسط اطلاعات پیچیده در مورد مصرف و رطوبت مناسب خاک، به استفاده از تراکتور برای شخم بگذاری، به صورت یک اسکرین بی‌سوز در مكان یک نوار از زمین را توسط گاوانه شخم زده و هم‌زمان از خاک برای نمونه‌گیری تصادفی انگشتر و رطوبت آن معین

پرسه‌دان و کشاورزی و مواد طبیعی / سال سیزدهم / شماره جهیز و هفت (ب) / بهار ۱۳۸۸
ش. در روش باک بر، قبل از شروع عملیات مخزن سوخت تراکتور را کامل پر و لبزیر کرده و پس از پیش‌بری بار، مخزن سوخت دوباره ابرداری می‌گردد. مقدار سوخت مورد نیاز برای پر کردن مجدد مخزن سوخت در پایان عملیات، پایان مقدار سوخت مصرفی در مصاحبه با هدی انجام کار توسط ماشین است.

اندازه‌گیری کل زمان مورد نیاز سیستم خاکوزی
برای تعیین کل زمان مورد نیاز برای هر سیستم خاکوزی، ابتدا مجموع زمان‌های مصرفی و دور زدن مشابه در ابتدا و انتهای مزرعه برای هر کدام از عملیات اصلی محسوب می‌شود، در می‌آید. توطیش نسب به تراکتور مختصات محسوب می‌شود و سپس با جمع کردن زمان انجام مراحل مختلف خاکوزی کل زمان مورد نیاز سیستم محاسبه شد.

ظرفیت مزرعه
کار آنجم شده (بر حسب سطح با ماده توسط ماسه در زمینه خاکوزی) کشت، داشت و برداشت را در مدت یک ساعت، ظرفیت مزرعه‌ای می‌گویند (1). در این آزمایش ظرفیت مزرعه‌ای سیستم هر سیستم از مجموع کل زمان‌های مصرفی و غیر مصرفی در مزرعه برای انجام عملیات در سطح یک هکتار در شرایط مزرعه و با استفاده از رابطه ۱ محاسبه شد.

\[C_a = \frac{A}{T} \]

در اینجا:

- \(C_a \) = ظرفیت مزرعه‌ای (ha/h)
- \(A \) = مساحت مزرعه در سطح (ha)
- \(T \) = زمان کل زمان (مصرفی و تلف شده)

میزان خرد شدن خاک
قطر متوسط وزنی شاهکاری است که هموارا برای تعیین میزان خرد شدن خاک از میانه می‌شود (8). در این روش پس از انجام خاکوزی در

\[\text{(MWD)(Mean Weight Diameter)} \]

ضهن خاصیت‌های فنی در روش‌های خاکوزی و خاکوزی مرسوم

\[\rho = \frac{M}{V} \]

در اینجا:

- \(\rho \) = وزن مخصوص ظاهری (g/cm³)
- \(M \) = حجم خاک با استوانت نمونه‌برداری (cm³)
- \(V \) = نمونه‌برداری خاک از هر گرادی‌گیری خاک
هزینه خاکورزی

در شرایط یکسان از نظر قابلیت تولید محصولات مختلف و نهاده‌های مصری مانند کود و حشره‌کش‌ها، هزینه انجام عملیات خاکورزی کلی بین سوئدی‌ها آن‌ها (۱۸). در این پژوهش، میانگین هزینه عملیات نهایی زمین بر اساس اجرت محلی و با مراجعه به سیستم فناوری اسلامی و همچنین نتایج تجمال خاکورزی به صورت اجباری و همچنین نتایج خدمات مکانیزه‌سازی در منطقه (شرکت عبادالله شمیمی) به صورت ریال بر هکتار محاسبه‌شده سپس از انجام آزمایش و جمع‌آوری داده‌ها تجزیه و تحلیل داده‌ها انجام شده و میانگین صفات به‌روش آزمون چند دامنه‌ای ذاتی مقایسه شد.

ثبت و بحث

کمترین مقدار مصرف سوخت به‌دست آمده (جدول ۴). افزایش عملیات خاکورزی و شخم اثر بسیار چشمگیری بر سوخت مصرف دارد. به ازای یک سانتی‌متر افزایش عملیات خاکورزی مقدار خاک‌کش کاهشی که به دنبال جابجایی با برگردان، شد

جدول ۴

نتایج تجمال خاکورزی با وجود داده‌های سوخت مصرف مشابه در مقدار مصرف سوخت در دیسک‌ها و دارای چسب‌ای مشابه است. در صورت وجود داده‌های سوخت مصرف مشابه در دیسک‌ها، افزایش عملیات خاکورزی با دیسک‌های کوچک‌‌تری، نیز در مقایسه تیمارهای خاکورزی با کولیتارهایه با عمق ۱۰ و ۱۵ سانتی‌متر نیز به‌خوبی دیده می‌شود.

نتایج این تحقیق نشان داد که در عملیات کار یکسان برای کاربرد یک پار دیسک و کولیتارون بر روی زمین شخم، تمالار (۴۰٪) کمتر از کولیتارون بود (جدول ۵). این امر می‌تواند به دلیل پیشرفت بهره‌مندی کشی کولیتارا تابع به دیسک‌ها باشد. در اینجا از اینکه وضعیت کار این کمتر از دیسک‌ها، برای انجام عملیات به دست می‌آید و سرعت پیشرفت تیمار کمتر بود. اما استفاده از دوباره عملیات دیسک‌زنی در تیمار
جدول 3. تجزیه و تحلیل مربوطات اثر روش‌های خاکوزی بر شاخص‌های فنی مورد بررسی

<table>
<thead>
<tr>
<th>مقدار</th>
<th>مصرف سوخت</th>
<th>کل بخار ذخیره</th>
<th>وزن مخصوص ظهرا</th>
<th>قطر متوسط ظهرا</th>
<th>وزن کلولخا</th>
<th>کل زمان</th>
<th>منبع نیروی</th>
<th>تکرار</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(l/ha)</td>
<td>(cm)</td>
<td>(g/cm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>مرسوم</td>
<td>(T1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/281</td>
<td>0/661</td>
<td>0/4/272</td>
<td>0/342</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیسک سیک (T2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/083</td>
<td>0/099</td>
<td>0/1/0/537</td>
<td>0/1/0/282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>دیسک سگنی (T3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/099</td>
<td>0/079</td>
<td>0/1/0/500</td>
<td>0/1/0/322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کولنیوتروپ (T4)</td>
<td>10 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/099</td>
<td>0/079</td>
<td>0/1/0/537</td>
<td>0/1/0/282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کولنیوتروپ (T5)</td>
<td>15 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/099</td>
<td>0/079</td>
<td>0/1/0/500</td>
<td>0/1/0/322</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>گازدهن دور (T6)</td>
<td>20 cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/099</td>
<td>0/079</td>
<td>0/1/0/537</td>
<td>0/1/0/282</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**: تفاوت معنی‌دار در سطح 1%.

مقدار معنی‌دار کل مصرف سوخت در 10, 9, 8, 7, 6 ساله‌های خاکوزی با

gوآهون در دو شب به دیگر روش‌های خاکوزی به‌دلیل

کاهش عمق خاکوزی به 5 سانتی‌متر، کاهش درصد بخار به

حدود صفر، کاهش رفت و آمد مایع‌ها و ادوات و انجام همه

عملیات خاکوزی در یک بار عبور است.

кал زمان مورد نیاز

نتایج جدول تجزیه و تحلیل نشان داد که بین روش‌های

خاکوزی از نظر کل زمان مورد نیاز برای انجام مجموعه

خاک‌وزی با دیسک در مقایسه با تیمار یک پاس کولنیوتروپ باعث

شدته است که مجموع مصرف شده در این تیمار تراست

به تیمار خاکوزی با کولنیوتروپ افزایش یافته است (جدول 3) در

خاکوزی با کولنیوتروپ چهاردمی به عمق 10 سانتی‌متر

علی رغم این که زمان مورد نیاز برای یک پاس کولنیوتروپ نسبت

به یک پاس دیسک افزایش یافته، نابرابری در این سیستم به علت

بسیار شدید شده به یک پاس کولنیوتروپ، مجموع کل زمان مورد نیاز

کاهش یافته و در حدود عملیات با دیسک (T2) و

ریتوتروپ (T6) قرار گرفته است.
جدول 5: میانگین شاخص‌های مورد بررسی برای روش‌های گوناگون خاکورزی به تفکیک نوع ادوت مورد استفاده در هر سیستم

<table>
<thead>
<tr>
<th>روش خاکورزی</th>
<th>نوع ادوت</th>
<th>مصرف (l/ha)</th>
<th>مورد نیاز (ha/h)</th>
<th>ظرفیت (٪)</th>
<th>بارزهای مزرعه (km/h)</th>
<th>سرعت (km/h)</th>
<th>وزش (٪)</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاراهن بگرک‌دان</td>
<td>پسر</td>
<td>22/26</td>
<td>1/65</td>
<td>12/99</td>
<td>1/41</td>
<td>5/05</td>
<td>1/56</td>
</tr>
<tr>
<td>دیسک اول</td>
<td>شحم بگرک‌دان به عمق (T1)</td>
<td>12/07</td>
<td>1/71</td>
<td>1/71</td>
<td>5/05</td>
<td>8/86</td>
<td>9/00</td>
</tr>
<tr>
<td>دیسک دوم</td>
<td>تا 20 cm</td>
<td>1/67</td>
<td>1/71</td>
<td>1/71</td>
<td>5/05</td>
<td>8/86</td>
<td>9/00</td>
</tr>
<tr>
<td>دیسک سه‌گنگ به عمق (T2)</td>
<td>تا 80 cm</td>
<td>8/22</td>
<td>1/22</td>
<td>1/22</td>
<td>5/05</td>
<td>8/86</td>
<td>9/00</td>
</tr>
<tr>
<td>دیسک دوم</td>
<td>تا 16 cm</td>
<td>11/33</td>
<td>1/02</td>
<td>1/02</td>
<td>5/05</td>
<td>8/86</td>
<td>9/00</td>
</tr>
<tr>
<td>کوبی‌درور به عمق (T3)</td>
<td>تا 16 cm</td>
<td>12/63</td>
<td>1/83</td>
<td>1/83</td>
<td>5/05</td>
<td>8/86</td>
<td>9/00</td>
</tr>
<tr>
<td>کوبی‌درور به عمق (T4)</td>
<td>تا 16 cm</td>
<td>12/63</td>
<td>1/83</td>
<td>1/83</td>
<td>5/05</td>
<td>8/86</td>
<td>9/00</td>
</tr>
<tr>
<td>کوبی‌درور به عمق (T5)</td>
<td>تا 16 cm</td>
<td>12/63</td>
<td>1/83</td>
<td>1/83</td>
<td>5/05</td>
<td>8/86</td>
<td>9/00</td>
</tr>
</tbody>
</table>

و در صورت محدود بودن زمان مناسب کاری، نیازمند افزایش در نوآوری مکانیزه برای انجام به موقع عملات است. کل زمان مورد نیاز در روش خاکورزی مرسوم 1/4 ساعت بر هکتار بود که بیش از 24٪ از صرف انجام عملات شحم بگرک‌دان شده است. کاهش معنی‌دار زمان مورد نیاز در روش‌های خاکورزی با دیسک سبک (18/6 ساعت بر هکتار) و دیسک سبک (18/6 ساعت بر هکتار) نسبت به روش مرسوم عملیات نشان از حذف عملیات شحم بوده است.

با وجود نیاز به زمان بیشتر برای یک بار عبور کوبی‌درور نسبت به یک بار عبور دیسک در عمق یکسان، بین‌هده شدید به یک بار عبور کوبی‌درور در این تیمار باعث کاهش زمان مورد نیاز نسبت به دو بار عبور دیسک شده است.

عملیات پیش‌بینی شده در هر سیستم، اختلاف معنی‌دار در سطح 1/ و در نتایج داشت (جدول 3). در این نتایج از روش‌های کم خاکورزی باعث کاهش زمان مورد نیاز نسبت به روش مرسوم شد. این شاخص در سیستم‌های خاکورزی T3 و T6 بهترین نتایج و سطح 0.05 درصد کاهش یافته (جدول 4). این نتایج با پایه‌گذاری آموزش و تربیت که با مقایسه روش‌های خاکورزی مرسوم و EU خاکورزی برای کشت بذر، تجدید زمان مورد نیاز برای عملیات خاکورزی و هرینگ کارگری، روش EU خاکورزی را از روش مرسوم برتر دانسته، همراه خوانی دارد (12).
مقايسه برخی چاپی‌های فنی در روش‌های کوکاکورزی و خاکورزی مرسوم

افراش عمق خاکورزی در تیمار کوکاکورزی به عمق 15 سانتیمتر نسبت به کوکاکورزی با عمق 16 سانتیمتر، باعث کاهش شدید در سرعت بیشتری و در نتیجه افزایش زمان مورد نیاز شد (جدول 5). برخی از عوامل و ماسیافت‌های روش‌های خاکورزی مرسوم، دوباره نمودار کوکاکورزی و گاوهن در برآورد و اجرای عملکرد بین منطقه شافور خوزستان، گزارش نمودند که روش‌های خاکورزی مرسوم بررسی از نظر عملکرد شتاب در تفاوت معنی‌دار داشتند و روش خاکورزی با کوکاکورزی به عمق 5 سانتیمتر را بهتر بهترین پیشنهاد نمودند (6). در این تحقیق نیز با وجود که زمان مورد نیاز برای یک بار عملکرد در تیمار خاکورزی با گاوهن دوار، برای یک بار عملکرد شتاب در خاکورزی با کوکاکورزی به عمق 15 سانتیمتر و ریبوناتور ضمن قرار گرفتن یک گردآم، از روش‌های مرسوم و کوکاکورزی به عمق 15 سانتیمتر برتر بودند. فرضیات مزرعه‌ای در روش‌های کوکاکورزی T2 تا T6 نسبت به روش مرسوم با ظرفیت مزرعه‌ای 0/27 77، بهترین به معیار 6/7/4/2/2/0، تفاوت به معیار 0/1/8 و 1/3 برای افزایش نشان داده جدول 4.

با نظارت بر وجود رابطه معکوس بین ظرفیت مزرعه‌ای و زمان مورد نیاز در واحد سطح، می‌توانیم نتیجه گرفت که بعد از آغاز انجام عملیات در پنج سطح معین شده می‌توانند باعث افزایش ظرفیت مزرعه‌ای و آسیب مالی به میزان افزایش زمان به کاهش در تعداد تراکتور و ادوات مورد نیاز برای انجام پروتکل عملیات و

ظرفیت مزرعه‌ای

نتایج جدول تجزیه وارونس داده‌ها روش‌هایی که از نظر ظرفیت مزرعه‌ای تفاوت بین روش‌های خاکورزی در سطح 1/4، معنی‌دار بود (جدول 3). روش‌های خاکورزی با دیدک سیبک، دیدک سگن، کوکاکورزی با عمق 15 سانتیمتر و ریبوناتور ضمن قرار گرفتن یک گردآم، از روش‌های مرسوم و کوکاکورزی به عمق 15 سانتیمتر برتر بودند. ظرفیت مزرعه‌ای در روش‌های کوکاکورزی T2 تا T6 نسبت به روش مرسوم با ظرفیت مزرعه‌ای 0/27 77، بهترین به معیار 6/7/4/2/2/0، تفاوت به معیار 0/1/8 و 1/3 برای افزایش نشان داده جدول 4.

ظرفیت مزرعه‌ای

نتایج جدول تجزیه وارونس داده‌ها روش‌هایی که از نظر ظرفیت مزرعه‌ای تفاوت بین روش‌های خاکورزی در سطح 1/4، معنی‌دار بود (جدول 3). روش‌های خاکورزی با دیدک سیبک، دیدک سگن، کوکاکورزی با عمق 15 سانتیمتر و ریبوناتور ضمن قرار گرفتن یک گردآم، از روش‌های مرسوم و کوکاکورزی به عمق 15 سانتیمتر برتر بودند. ظرفیت مزرعه‌ای در روش‌های کوکاکورزی T2 تا T6 نسبت به روش مرسوم با ظرفیت مزرعه‌ای 0/27 77، بهترین به معیار 6/7/4/2/2/0، تفاوت به معیار 0/1/8 و 1/3 برای افزایش نشان داده جدول 4.

ظرفیت مزرعه‌ای

نتایج جدول تجزیه وارونس داده‌ها روش‌هایی که از نظر ظرفیت مزرعه‌ای تفاوت بین روش‌های خاکورزی در سطح 1/4، معنی‌دار بود (جدول 3). روش‌های خاکورزی با دیدک سیبک، دیدک سگن، کوکاکورزی با عمق 15 سانتیمتر و ریبوناتور ضمن قرار گرفتن یک گردآم، از روش‌های مرسوم و کوکاکورزی به عمق 15 سانتیمتر برتر بودند. ظرفیت مزرعه‌ای در روش‌های کوکاکورزی T2 تا T6 نسبت به روش مرسوم با ظرفیت مزرعه‌ای 0/27 77، بهترین به معیار 6/7/4/2/2/0، تفاوت به معیار 0/1/8 و 1/3 برای افزایش نشان داده جدول 4.

ظرفیت مزرعه‌ای

نتایج جدول تجزیه وارونس داده‌ها روش‌هایی که از نظر ظرفیت مزرعه‌ای تفاوت بین روش‌های خاکورزی در سطح 1/4، معنی‌دار بود (جدول 3). روش‌های خاکورزی با دیدک سیبک، دیدک سگن، کوکاکورزی با عمق 15 سانتیمتر و ریبوناتور ضمن قرار گرفتن یک گردآم، از روش‌های مرسوم و کوکاکورزی به عمق 15 سانتیمتر برتر بودند. ظرفیت مزرعه‌ای در روش‌های کوکاکورزی T2 تا T6 نسبت به روش مرسوم با ظرفیت مزرعه‌ای 0/27 77، بهترین به معیار 6/7/4/2/2/0، تفاوت به معیار 0/1/8 و 1/3 برای افزایش نشان داده جدول 4.

ظرفیت مزرعه‌ای

نتایج جدول تجزیه وارونس داده‌ها روش‌هایی که از نظر ظرفیت مزرعه‌ای تفاوت بین روش‌های خاکورزی در سطح 1/4، معنی‌دار بود (جدول 3). روش‌های خاکورزی با دیدک سیبک، دیدک سگن، کوکاکورزی با عمق 15 سانتیمتر و ریبوناتور ضمن قرار گرفتن یک گردآم، از روش‌های مرسوم و کوکاکورزی به عمق 15 سانتیمتر برتر بودند. ظرفیت مزرعه‌ای در روش‌های کوکاکورزی T2 تا T6 نسبت به روش مرسوم با ظرفیت مزرعه‌ای 0/27 77، بهترین به معیار 6/7/4/2/2/0، تفاوت به معیار 0/1/8 و 1/3 برای افزایش نشان داده جدول 4.

ظرفیت مزرعه‌ای

نتایج جدول تجزیه وارونس داده‌ها روش‌هایی که از نظر ظرفیت مزرعه‌ای تفاوت بین روش‌های خاکورزی در سطح 1/4، معنی‌دار بود (جدول 3). روش‌های خاکورزی با دیدک سیبک، دیدک سگن، کوکاکورزی با عمق 15 سانتیمتر و ریبوناتور ضمن قرار گرفتن یک گردآم، از روش‌های مرسوم و کوکاکورزی به عمق 15 سانتیمتر برتر بودند. ظرفیت مزرعه‌ای در روش‌های کوکاکورزی T2 تا T6 نسبت به روش مرسوم با ظرفیت مزرعه‌ای 0/27 77، بهترین به معیار 6/7/4/2/2/0، تفاوت به معیار 0/1/8 و 1/3 برای افزایش نشان داده جدول 4.
هزینه خاکورزی

مقایسه روش‌های مختلف خاکورزی از نظر مبلغ هزینه مورد نیاز برای مجموعه عملیات پیش‌بینی شده در هر کدام از سیستم‌های خاکورزی نشان دهنده وجود اختلاف زیاد بین روش مرسوم با دیگر روش‌های خاکورزی است (شکل 1). افزایش عمل خاکورزی بر سبیل چنگیزی بر هر هکتار و مصرف سوخت دارد (9). بدلیل کاهش عمل خاکورزی و حدف پرخی عمیقات و ترده‌ها، کل هزینه خاکورزی در روش‌های خاکورزی تا T6 به‌ترتیب به‌میزان 40، 42، 54، 56 و 60 درصد نسبت به روش مرسوم، با هزینه 1000، 1050، 1100، 1150 و 1200 ریال بر هکتار، کاهش یافته است. نتایج بدست آمده در این آزمایش با یافته‌های خبره و همکاران می‌نماید که از کسایی که مصرف سوخت و انرژی به‌ترتیب از دنبالکردن روش‌های پیش‌بینی شده و گواهی سازگاری و گواهی برگزاری (15) و یافته سیمگا و همکاران می‌نماید بر روی 240 درصد کاهش در هزینه روش‌های مختلف خاکورزی در منطقه شیرو و براساس اجرای سه‌حلی در سال‌های 1387-6

نتایج گیری

1. در انتخاب روش خاکورزی برای کشت یک محصول، علاوه بر شاخص‌های فنی، باید عوامل کاهش درآمد و درآمد خالص در واحد نمره توجه قرار گیرد. امکان در شرایط انجام این تحقیق در صورت تعیین نشان نمایش قرار گرفتن عوامل کاهش درآمد، می‌توان با عوامل شاخص‌های فنی مورد بررسی، هر یک از روش‌های خاکورزی (سفل‌های) را بسته به نوع ادوات و زمان در اختیار، چاپ‌گیری روش مرسوم نمود.

2. کمترین مقدار مصرف سوخت، به‌ترتیب در روش‌های کم‌خاکورزی با گاو‌های دیسک سیک، کولونیور به عمق 15 سانتی‌متر، دیسک سیک و روش مرسوم بسته آمد.
منابع مورد استفاده

1. روهوی، م. سلیمانی، و. لویی. 1388. میزان کاهش اسیدیت کشاورزی. چاپ دوم. مؤسسه انتشارات حضرت مصوویه (م). قم.

2. روهوی، م. رفعی و. ن. نوکلی. 1379. تأثیر کشاورزی و منابع طبیعی جلدل هم‌نامی‌های کشاورزی. انتشارات و چاپ، دانشگاه تهران.

3. ری. 1387. هزینه تولید محصولات کشاورزی (متوسط هزینه تولید یک هکتار محصولات کشاورزی به تفكیک مراحل مختلف)

4. خسروی، م. آ. لویسی. ا. ا. #346. بررسی امکان کشاورزی سطحی در کشت در کشور در سال زراعی 1385-1386). وزارت جهاد کشاورزی، تهران.

5. دهقان، ا. و. د. 1385. اثر روشهای مختلف خاکویی بر عملکرد اجزای عملکرد و رقم بزرگ بخشک کاری در منطقه شاور خوزستان. مجله تحقیقات مهندسی کشاورزی 7(3): 99-100.

7. روژه، م. ی. بوستانی. م. شاکر و. ر. نیکارد. 1379. تأثیر روشهای مختلف خاکویی بر عملکرد گندم در تناوب با ذرت.

8. صلسه، ج. و. لغوی. ا. احمدی و. م. روژه. 1380. تأثیر درصد رطوبت خاک و عملکرد ریزه در میزان خرد شدن خاک و کاهش عملیات خاکویی تانیه. مجله تحقیقات مهندسی کشاورزی 2(1-2): 10-17.

9. کوچکی، م. و. سلیمانی. 1377. اصول و عملیات کشاورزی در مناطق خشک. (ترجمه) نشر آموزش کشاورزی، کرج.

10. منصوری. و. د. 1376. ترکیباتی و مانند ابیات کشاورزی جلدل اول. چاپ دوم، انتشارات دانشگاه هویه سنی، همدان.

