مقایسه برخی شاخه‌های فنی در روش‌های کم‌خاکورزی و خاکورزی مرسوم

الیس دهقان1 و مرتضی الماسی2

(تاریخ دریافت: ۱۳۸۸/۱۲/۰۴ تاریخ پذیرش: ۱۳۸۹/۰۳/۰۴)

چکیده

مقدمه

روش‌های خاکورزی غایاب یا پایه‌گذاری کننده نوع ماسیف‌ها و ادوات به‌کار رفته بوده و در ارائه روش‌های تعیین شده و گاه تعیین نشده‌ای است که بسته به شرایط آب و هوا و انتخابی شیمیایی خاک، نوع محصول و هدف تولید زمان و نوع ماسیف‌ها و ادوات در اختیار دارای آثار سومیده و گاه متغیر است.

ساسخت انجام کار و انرژی‌های بودن عملیات آماده‌سازی

1. عضو هیئت علمی بخش تحقیقات فنی و مهندسی، مرکز تحقیقات کشاورزی و منابع طبیعی خوزستان
2. استاد مهندسی مکانیک ماسیف‌های کشاورزی و مکانیاسی، دانشگاه کشاورزی، دانشگاه شهید Chamran اهواز
elyas_dehghan@yahoo.com

* مسئول مکانیک، پست الکترونیکی:
روش نموده که بیشترین بذرها مصرف سوخت و انرژی بی‌تری از دیسک، روتاتور و گاوهای بیشماری و گاوهای برگرداندار بوده است (15). ولی مقایسه روش‌های خاکوروزی مرسوم و حفاظتی توسط برخی دیگر از پژوهشگران نشان داد که خاکوروزی حفاظتی در برخی مناطق از نظر اقتصادی مقرون به صرفه نیست (15، 17 و 22).

دقت و همانی با مقایسه اثر روش‌های خاکوروزی مرسوم، دوبار دیسک، کولتوریور و گاوهای دواره (به عمق 5 سانتی‌متر) بر عملکرد و اجرای عملکرد برنج در منطقه شاهور خوزستان، گزارش نمودند که روش‌های خاکوروزی مورد بررسی از نظر عملکرد شلوت فاقد معنایی در ناشناخت (5).

سکینه و آنالی ای بررسی اثر روش‌های خاکوروزی 1- شخم برگردان + دوار دیسک، 2- خاکوروزی سطحی با خاکوروز دوار + یکبار دیسک، 3- دوبار دیسک، بر ویژگی‌های فیزیکی خاک و عملکرد گندم در یک خاک رسی لومی در ترکیه گزارش نمودند که بیشترین فقدان به مرتبه توسط خاکوروزی با دوار دیسک، خاکوروزی با شخم برگردان + دوار دیسک و خاکوروز دوار + یکبار دیسک و MWD و به‌دست آمده. آنها هم‌چنین گزارش نمودند که افزایش زمینه کلولخواها باعث کاهش جوانی و رشد مو گندم شد (17). روزه و غذای بی‌درنگی بررسی شدند. خاکوروزی اولیه با گاوهای بی‌درنگی و بی‌درنگی با دیسک و خاکوروز دوار در دارایی توان دارد گزارش نمودند که افزایش قطع متوسط وزنی کلولخواها در روش خاکوروزی نانه با سه دیسک و یکبار خاکورز دوار برایی می‌کند (6).

انتخاب روش خاکوروزی و مدیریت و برنامه‌ریزی عملیات آباده‌سازی زمین برای کشت محصولات مختلف در مرکز نیازمند دسترسی به شاخ‌ها و اطلاعاتی در مورد شرایط، چگونگی، مرکز و معاون انجمن روش‌های گوناگون خاکوروزی است. در بررسی روش‌های خاکوروزی، بیشتر به ادبیات و شرایط شاخ‌های کشوری مانند خاک‌های خاکوروزی میدان محاسبه عملیات، میزان مصرف سوخت و انرژی، فشدرگی خاک و وزن مخصوص که در پی این سوال می‌باشد.

نکات پژوهش‌های انجام‌شده در دنیای روی روش‌های خاکوروزی برای محصولات گوناگون نشان داده است که بسته به شرایط محیطی، امکانات و اهداف، هر یک از روش‌های خاکوروزی مرسوم (15 ن، 16 و 20)، خاکوروزی کمینه (2) و 1/10 و 1/10 خاکوروزی (12)، می‌توان بر دیدگاه برتری داشته باشد.

مقایسه روش‌های خاکوروزی توسط خیرالله و همکاران
مقايسه برخی شاخص‌های فنی در روش‌های کخارکوری و کخارکوری مرسوم

ظریه و مقاومت نفوذی خاک، فرایشیسی با دادی، و آبی درصد برگردان بیان‌گری گیاهی، میزان خرد شدن خاک، زمان مورد نیاز در واحد سطح، ظرفیت و بازده مزروعه، میزان سرمایه‌گذاری، آلودگی زیست محیطی و غیر مورد ارزیابی قرار می‌گیرد.

این تحقیق نیز به‌منظور دست‌یابی به اطلاعات کمی‌پایه در مورد برخی شاخص‌های فنی، برای استفاده در شرایط کاری مشابه اجرای شد.

اطلاعات بدست آمده در این پژوهش می‌تواند در مدیریت و برنامه‌ریزی ناوگان کشاورزی خاک و حرکت در سطح اجرایی مورد استفاده قرار گیرد. علاوه بر این، در آزمایش‌های نیز که در آینده، در شرایط متفاوت این تحقیق، برای مقایسه اثر روش‌های خاکوزی بر روی محصولات مختلف اجرای خواهد شد. می‌توان تهیه مدل‌های و شاخص‌های مرتبط با سیستم‌ها از ابزارهای کم‌هزینه و برای مصوبات‌های مورد نیاز در این آزمایش استفاده کرد و از تکنیک آنها برای محصولات گوناگون خودداری نمود.

مواد و روش‌ها

این آزمایش در تابستان سال 1382 در یک خاک رسی حصاری پایای گند در اینستان تحقیقات کشاورزی شاورین اجرا شد. بسته‌های تحقیقات کشاورزی شاورین در فاصله 70 کیلومتری شمال اهر واقع شده است. خاک‌های این منطقه غالبًا از نظر مواد آلی و آب و هوایی نیز این منطقه دارای اقلیم خشک و نرمخکش بوده و مانند سیالانه دما و بارندگی آن بر ترتیب 32 درجه سلسیوس و 244 میلی‌متر می‌باشد. مشخصات خاک محل اجرای آزمایش در جدول 1 آورده شده است.

در این تحقیق روش‌های خاکوزی مرسوم و پنج روش کم‌خاکوزی در قالب طرح بلوک‌های کامل تصادفی در سه تکرار مورد مطالعه و ارزیابی قرار گرفتند. تیمارهای کم‌خاکوزی عبارت بودند از:

1- روش مرسوم یک بار گاوانهین برگرداند به عمق 20 سانتی‌متر
2- روش مرسوم یک بار دیسک عمود بر هم + ماله
3- دو بار دیسک سبک عمود بر هم به عمق 10-15 سانتی‌متر + ماله
4- دو بار دیسک سخت فراوانی به عمق 10-15 سانتی‌متر + ماله
5- یک بار کولتورات بیلچه‌ای به عمق 15 سانتی‌متر + ماله
6- یک بار گاوانه گروهی به عمق 5 سانتی‌متر + ماله
7- بسته به ظرفیت و نسبت پهنای گیاهی به مصرف انرژی به‌نگهداری ایجاد کننده
8- پهنای پوششی به هر سانتی‌متر در هر کدام از تیمارهای کم‌خاکوزی، کولتورات و دیسک، ایجاد ایجاد افزایش تأثیر عمق کار این ادوات بر شاخص‌های
9- تیمارهای توسط خاک‌جوی به تابعیت ماله در تیمارهای T2 T3 T4 تا
10- نیز حذف تاثیراتی فاصله از جوی پشت‌ها، نهرها و مراحل
11- برچسب‌های تابعیت ماله از کشتم تا بود.

شاخص‌های مورد بررسی در این تحقیق عبارت بودند از:

- هزینه خاکوزی در هکتار، مقدار مصرف سیستم در هکتار، زمان مورد نیاز برای انجم کار، ظرفیت و مزروعه سیستم، میزان خرد شدن کل‌خاکه و وزن مخصوص ظریف خاک. هر روش خاکوزی در قطعاتی به ابعاد 0.25 متر مورد انرژی قرار گرفت، در هر قطعه یک نوار به عرض ۵ متر برای انجم تظیمات عمق کار و تعبیه شرایط کاری مناسب از نظر دندان و سرعت بیشتر تراکتور و درصد لغزش چرخ‌ها و فاصله 10 متر از سر و ته قطعه به عنوان فضای دور تراکتور و رسیدن به سرعت مناسب در نظر گرفته شد. پس از مخازن زمین (ماخ برای است از آبیاری زمین قبل از خاکوزی با بهره‌کاهش مفاوت خاک در برای عملیات تهیه زمین) برای تعبیه نمود.
جدول 1. مشخصات خاک استفاده تحقیقات کشاورزی شاور

<table>
<thead>
<tr>
<th>عناصر میکرو و قابل جذب (mg.kg⁻¹)</th>
<th>فانت (Fe)</th>
<th>Mn</th>
<th>Zn</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>0.8</td>
<td>0.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>عمق خاک (cm)</td>
<td>0.5-30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

جدول 2. ویژگیهای ماسیف ها و ادوات مورد استفاده در آزمایش

<table>
<thead>
<tr>
<th>شرکت سازنده و مدل</th>
<th>شرح</th>
<th>نام دستگاه</th>
<th>کوارن</th>
<th>قطرات آهکی (GAK)</th>
<th>خراسان (John Deere)</th>
<th>24 پره (گره جهاده 12 بلقاب)</th>
<th>کوپونور</th>
<th>گره تولیدی ماسیف</th>
<th>بیچجام</th>
<th>کوپنور</th>
<th>روسن مشهد</th>
<th>گره تولیدی تراکتور 1</th>
<th>کوهان دوان</th>
<th>گروه پارس ایران (SNOW PARS)</th>
<th>گره تولیدی تراکتور 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>باروهای هیدرولیک 5-7</td>
<td>عمق هیدرولیک</td>
<td>0.15</td>
<td>0.18</td>
<td>کوپنور</td>
<td>روسن مشهد</td>
<td>گره تولیدی تراکتور 1</td>
<td>کوهان دوان</td>
<td>گروه پارس ایران (SNOW PARS)</td>
<td>گره تولیدی تراکتور 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کشفهای 4-5</td>
<td>نشست گردن</td>
<td>0.15</td>
<td>0.18</td>
<td>کوپنور</td>
<td>روسن مشهد</td>
<td>گره تولیدی تراکتور 1</td>
<td>کوهان دوان</td>
<td>گروه پارس ایران (SNOW PARS)</td>
<td>گره تولیدی تراکتور 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>چهار جرخ</td>
<td>تاصل</td>
<td>0.15</td>
<td>0.18</td>
<td>کوپنور</td>
<td>روسن مشهد</td>
<td>گره تولیدی تراکتور 1</td>
<td>کوهان دوان</td>
<td>گروه پارس ایران (SNOW PARS)</td>
<td>گره تولیدی تراکتور 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>کیلوگرم</td>
<td>قابل خواری</td>
<td>0.15</td>
<td>0.18</td>
<td>کوپنور</td>
<td>روسن مشهد</td>
<td>گره تولیدی تراکتور 1</td>
<td>کوهان دوان</td>
<td>گروه پارس ایران (SNOW PARS)</td>
<td>گره تولیدی تراکتور 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

می شد. هنگام که خاک گازو و شده و شرایط آن برای شخم مناسب گردید، عملیات شخم در تیمار مربوطه انجام و رطویت خاک بر مبنای وزن خاک خشک محاسبه شد. درصد رطویت خاک در زمان عمال تیمارهای خاک وری مرسوم (شخم)، دیسک، کوپنور و گیاهان دوار به ترتیب 19.3، 19.3، 19.3 و 18.5 درصد بود. با توجه به نبود اطلاعات بالی در مورد درصد رطویت مناسب خاک برای شخم برگردان، به صورت بک رو درمان یک کیلو نوار از زمین را توسط گیاهان خاک زده و هردمان از خاک نيز نمونگیری تصادفی انجام و رطویت آن معین
نمایه برخی شاخص‌های فنی در روش‌های کوک‌کوروزی و خاک‌وروزی مرسم

۲۳ ۳۷+ ۲.۵-۷<۵ (g)

۲.۵-۷<۵ (g)

ش. در روش باک بر، قبل از شروع عملیات مخزن سوخت تراکتورها کاملاً پر یا لوپز کرده و پس از بازیابی عملیات نیز مخزن سوخت دوباره ابیریز می‌گردد. مقدار سوخت مورد نیاز برای پر کردن مجدد مخزن سوخت در پایان عملیات، برای مقدار سوخت مصرفی در مساحتی با مدت انجام کار توسط ماسه است.

اندازه‌گیری کل زمان مورد نیاز سیستم خاک‌وروزی

برای تعیین کل زمان مورد نیاز برای هر سیستم خاک‌وروزی، ابتدا مجموع زمان‌های میفید و دور زدن ماسه در ابتدا و انتهای مزرعه برای هر کدام از عملیات پیش‌بینی شده در سیستم، توسط زمان‌سنج به‌طور جداگانه محسوب می‌شود و می‌باشد کرون زمانان انجام مراحل مختلف خاک‌وروزی کل زمان مورد نیاز سیستم محسوب می‌شود.

ظرفیت مزرعه‌ای

کار انجام شده (بر حسب سطح یا ماده) توسط ماسه در زمینه خاک‌وروزی، کاشت، داشت و برداشت را در مدت یک ساعت، ظرفیت مزرعه‌ای می‌گویند (۱). در این آزمایشات ظرفیت مزرعه‌ای هر سیستم از مجموع کل زمان‌های میفید و غير میفید مصرف شده برای انجام عملیات در سطح یک کهفکار (در شرایط مزرعه) و با استفاده از رابطه ۱ محاسبه شد.

\[ C_h = \frac{A}{T} \]

۱ در اینجا:

\( ha/h \) = ظرفیت مزرعه‌ای \( ha \) مساحت مورد عملیات (cm)

\( T=\text{کل زمان (میفید و لطف شده)} \)

\( \rho = \text{وزن مخصوص ظاهری (g/cm}^3) \)

\( \rho = \text{وزن خاک شنک (M)} \)

\( \rho = \text{حجم خاک با استنوت نمونه‌برداری (cm}^3) \)

\( \rho = \text{وزن خاک خاکی از نوعی نمونه‌برداری (M)} \)

\( \rho = \frac{M}{V} \)
هزینه خاکورزی

در شرایط یکسان از نظر قابلیت تولید محصولات مختلف و نهاده‌های مصرفی مناسب کود و حشره‌کش‌ها، هزینه انجام عملیات خاکورزی کلید تعیین سوادمندی آن‌ها (۱۸). در این پژوهش، میانگین هزینه عملیات یکه زمان بر اساس اجرت محیطی و مارجینه به شش نفر از افراد سرشانس در ارائه خدمات مکانیزه خاکورزی به صورت اجرایی و همچنین نتیجه شرکت خدمات مکانیزه مستقر در منطقه (شرکت عبدالعلی شماسی) به صورت ریال بر هکتار محاسبه شد. پس از انجام آزمایش و جمع آوری داده‌ها تجزیه و تحلیل داده‌ها انجام شده و میانگین صفات به‌روش آزمون چند دانه‌ای دانک مقایسه شده.

نیاز و بحث

مصرف سوخت

نتایج نجیبی و ارائه داده‌ها نشان داد که از نظر میزان مصرف سوخت، بین روش‌های خاکورزی اختلاف معنی‌دار در سطح (۱٪) وجود داشت (جدول ۱). روش خاکورزی مرسم با مجموع ۹۷ لیتر بر هکتار و خاکورزی کاگاهون داور با مصرف ۱۵۳۹ لیتر بر هکتار به‌ترتیب دارای پیشرفت و کمترین مقدار مصرف سوخت بودند (جدول ۲).

افزایش عمیق خاکورزی و رشد اثر بیمار جسم‌گیری بر

افزایش عمیق خاکورزی در مصرف باید با روش‌های مختلف خاکورزی مناسب به‌هیچ حوادثی مواجه نشود. هدف اصلی انجام دادن به‌روش انجام عملیات به دهدن سنگین‌ترین بار، بودن سرعت بیشتری تیمار کمر بود. اما استفاده از ظرفیت جدید عملیات اینکه در میزان

دارد.

مقدار لغزش مثبت بین ۰-۱۵ درصد علاوه بر اینکه می‌توان

وجبه دندام برای ایجاد تغییر فرمی خاک و افزایش کشش

تراکتور لازم است. ولی افزایش پیش از حد آن باعث افزایش

انرژی می‌شود (۱). در روش مرسم، افزایش پیش از حد درصد

لگزش محکم تراکتور برای عملیات دیسک و ماله ری

خاک شیشه خورده نسبت به عملیات مشابه در تیمار دیسک

سبک، باعث شده است که مقداری از سوخت مصرفی و انرژی

روش دارد. سالانه سنگین کاهش سرعت بیشتری برای دیسک در روش

مرسم باعث کاهش ظرفیت و بارز مزرعه‌ای و افزایش

مقدار کردن موتور تراکتور برای انجام کار معمول شده است.

این عوامل روز هم هر فرهنگ افزایش معنی‌دار مصرف

سوخت در تیمار خاکورزی مرسم نسبت به دیگر تیمارها

شده است (جدول ۵).

هدف عملیات شخم بردگان در تیمارهای خاکورزی با

دیسک سبک و سنگین باعث کاهش شدید مصرف سوخت

نبشته به روش مرسم شده است. دلیل افزایش معنی‌دار مصرف

سوخت در تیمار خاکورزی با دیسک سنگین نسبت به دیسک

سبک، افزایش عمیق خاکورزی بین ۱۵ سانتی‌متر و

افزاش کل مقاومت کشش دیسک و ناز از گذشته بیشتر

و سرعت کمر بوده است. این وضعیت در مقایسه تیمارهای

خاکورزی با کولیپتیونر به عمیق ۱۰ و ۱۵ سانتی‌متر نیز به‌خوبی

دیده می‌شود.

نتایج این تحقیق نشان داد که در میزان کار یکسان برای

کاربرد یک یا دیسک و کولیپتوینر بر روی زمین شکم تخورده،

مقدار مصرف سوخت در دیسک ۹۵٪ کمتر از کولیپتیون

بود (جدول ۵). این امر می‌تواند به بهترین بودن مقاومت

کشش کولیپتیونر نسبت به دیسک باشد. زیرا در کولیپتیونر با

وجود این که عرض کار کر از دیسک بود، برای انجام

عملیات به دهدن سنگین‌ترین بار بود و سرعت بیشتری تیز

کمر بود. اما استفاده از دوبار عملیات دیسک‌زنی در تیمار

684
جدول 3. تجزیه دوباره مربعات اثر روش‌های خاکورزی بر شاخص‌های فنی مورد بررسی

<table>
<thead>
<tr>
<th>متغیر مربعات</th>
<th>هر چهار چهارم</th>
<th>هر چهار چهارم</th>
<th>مجموع مربعات</th>
<th>ستون کلیک‌های</th>
<th>مجموع مربعات</th>
<th>ستون ناپایدار</th>
<th>نتیجه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>وزن مخصوص ظاهری خاک</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>مثبت</td>
</tr>
<tr>
<td>قطر متوسط ظاهری خاک</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>مثبت</td>
</tr>
<tr>
<td>ظرفیت مزرعه‌ای کلیک‌های شيئا</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>مثبت</td>
</tr>
<tr>
<td>مصرف سوخت مورد نیاز سیستم</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>مثبت</td>
</tr>
<tr>
<td>کل زمان</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>مثبت</td>
</tr>
</tbody>
</table>

جدول 4. مقایسه میانگین شاخص‌های فنی مورد بررسی در سطوح مختلف روش خاکورزی

<table>
<thead>
<tr>
<th>سطح مختلف</th>
<th>وزن مخصوص ظاهری خاک</th>
<th>قطر متوسط ظاهری خاک</th>
<th>ظرفیت مزرعه‌ای کلیک‌های شيئا</th>
<th>مصرف سوخت مورد نیاز سیستم</th>
<th>کل زمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T1) مرسوم</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>(T2) دیسک دیسک سبک</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
<td>0.40</td>
</tr>
<tr>
<td>(T3) دیسک سبک</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
<td>0.60</td>
</tr>
<tr>
<td>(T4) کولنیاتور 10 cm</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
<td>0.80</td>
</tr>
<tr>
<td>(T5) کولنیاتور 15 cm</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>(T6) گاوانه دوار</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
<td>0.90</td>
</tr>
</tbody>
</table>

در هر سطح تفاوت بین میانگین‌های که حداقل یک حرف مشترک دارند معنی دار نیست.

* در هر ستون تفاوت بین میانگین‌های که حداقل یک حرف مشترک دارند معنی دار نیست.
جدول 5. موانع شاخص‌های مورد بررسی برای روش‌های گوناگون خاکوری به تفکیک نوع ادوات مورد استفاده در هر سیستم

<table>
<thead>
<tr>
<th>سرعت (km/h)</th>
<th>لغزش (‰)</th>
<th>گازهای برگردانده</th>
<th>مصرف (ل/ها)</th>
<th>نوع ادوات</th>
<th>روش خاکوری (سیستم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/00</td>
<td>0/19</td>
<td>0/21</td>
<td>0/95</td>
<td>دیسک اول</td>
<td>22/00 کلمن (پرکردن)</td>
</tr>
<tr>
<td>5/55</td>
<td>0/28</td>
<td>0/29</td>
<td>0/22</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>5/00</td>
<td>0/39</td>
<td>0/36</td>
<td>0/18</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>4/50</td>
<td>0/55</td>
<td>0/53</td>
<td>0/25</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>4/00</td>
<td>0/71</td>
<td>0/73</td>
<td>0/82</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>3/50</td>
<td>0/78</td>
<td>0/79</td>
<td>0/27</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>3/00</td>
<td>0/84</td>
<td>0/84</td>
<td>0/16</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>2/22</td>
<td>0/76</td>
<td>0/76</td>
<td>0/71</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>2/59</td>
<td>0/77</td>
<td>0/77</td>
<td>0/71</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>1/58</td>
<td>0/78</td>
<td>0/78</td>
<td>0/76</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>1/07</td>
<td>0/79</td>
<td>0/79</td>
<td>0/76</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>0/37</td>
<td>0/77</td>
<td>0/77</td>
<td>0/71</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>0/56</td>
<td>0/78</td>
<td>0/78</td>
<td>0/76</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>0/74</td>
<td>0/79</td>
<td>0/79</td>
<td>0/76</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>0/50</td>
<td>0/78</td>
<td>0/78</td>
<td>0/76</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
<tr>
<td>0/87</td>
<td>0/79</td>
<td>0/79</td>
<td>0/76</td>
<td>دیسک دوم</td>
<td>12/00 شاخ به عمق</td>
</tr>
</tbody>
</table>

و در صورت محدود بودن زمان مناسب کاری، نیازمند افزایش

و در نواگذاری مکانیزه برای انجام به موقع عملیات است. کل زمان
مورد نیاز در روشهای خاکوری مرسوم 2/4 ساعت بر هکتار
بود که بیش از 24/7% از وسیله‌ای که در روشهای
خاکوری با دیسک سیبک 1/8 ساعت بر هکتار) و دیسک
سنگین 1/0 ساعت بر هکتار) نسبت به مرسوم عمده‌ا
نامی از حذف عملیات شخم بوده است.

با وجود نیاز به زمان بیشتر برای یک بار عبور کلمن
نسبت به یک بار عبور دیسک در عمق یک سیسه، بین‌هده شده به
یک بار عبور کلمن روی این تیمار باعث کاهش زمان
مورد نیاز نسبت به یک بار عبور دیسک شده است.

عملیات پیش‌بینی شده در هر سیستم، احتمال معنی‌دار در سطح
1/0 وجود داشته (جدول 3). استفاده از روشهای کم‌خاکوری
باید کاهش زمان مورد نیاز نسبت به مرسوم شده. این
شاخص در سیستم‌های خاکوری تری، T6 و T7 نسبت
به مرسوم با زمان 12/01 ساعت بر هکتار، به ترتیب به‌پره‌یاران
باید افزایش آماده‌سازی و بهره‌برداری که با مقایسه روشهای خاکوری
متوقف، T4 و T5 نسبت به مرسوم کلی که با زمان 12/01
سابقه‌های کارگری، به دست آمده از افزایش زمان مورد نیاز
برای عملیات خاکوری و هرینه کارگری، روشهای خاکوری
تراکم و به‌کاربرد برای کاستن ترهب. از نظر زمان مورد نیاز
برای عملیات خاکوری و هرینه کارگری، روشهای خاکوری
را از روشهای مرسوم برتر دانستند، هم‌خوانی دارد (12).

افزایش زمان مورد نیاز برای اجرای یک سیستم نسبت به
سیستم دیگر به معنای نیاز به روزهای کاری مناسب بیشتر بوده

686
فیزیک خلاکوریزی در تیمار کولیوتوکریز بیش از ۱۵ سانتی متر نسبت به کولیوتوکریز بیش از ۱۰ سانتی متر، باعث کاهش شدید در سرعت پیشرفت و در نتیجه افزایش زمان مورد نیاز شده است (جدول ۵).

دهفان و المسای می‌باشند از روش‌های خلاکوریزی مرسوم، دویار دیسک، کولیوتوکریز و گاوهدن دوبار بر عملکرد و اجرای حمله برقی در منطقه شاواز خوزستان، گزارش نمودند که روش‌های خلاکوریزی مرسوم بررسی از نظر عملکرد شناخت تفاوت معنی‌دار نداشته و روش خلاکوریزی با کولیوتوکریز به عمق ۵ سانتی متر را برای کشت بذر روش‌های نمودند (۵). در این تحقیق نیز نشان داده شد که زمان مورد نیاز برای یک بار عبور رتبه‌ای در تیمار خلاکوریزی با گاوهدن دور، برای با یک بار عبور برای شنخ در حال خلاف سایر عملیات از جمله دیسک و ماله در این تیمار باعث کاهش در کل زمان مورد نیاز شده است.

ظرفیت مزرعه‌ای
نتایج جدول تجزیه واریانس داده‌ها روش‌های نمود که از نظر
ظرفیت مزرعه‌ای تفاوت بین روش‌های خلاکوریزی در سطح ۱/۰ سی‌آر دارد (جدول ۳) روی به خلاکوریزی با دیسک سبک، دیسک سبک، کولیوتوکریز به عمق ۱،۰ سانتی متر و رتبه‌ای ضمن قرار گرفتن در یک گروه آماری، از روش‌های مرسوم و
کولیوتوکریز به عمق ۱۵ سانتی متر بترود. ظرفیت مزرعه‌ای در روش‌های خلاکوریزی T۲ تا T۰ نسبت به روش مرسوم به ظرفیت مزرعه‌ای ۱۲۷/۰۲۰/۴/۲،۲/۴/۲۲/۲،۲/۲۴/۲/۲ و ۲/۳ برای افزایش نشان داد (جدول ۴).

با توجه به موجود رابطه معکوس بین ظرفیت مزرعه‌ای و زمان مورد نیاز در واحد سطح، می‌توان نتیجه گرفت که هر
عمالی که باعث کاهش زمان مورد نیاز برای انجام خلاکوریزی
در یک سطح معین شود می‌تواند باعث افزایش ظرفیت
مزرعه‌ای آن شود. این می‌تواند در نتیجه یک کاهش در
تعداد تراکتور و ادوات مورد نیاز برای انجام به‌موقع عملیات و
در این تحقیق تأثیر روش خاکورزی بر تغییرات وزن مخصوص ظاهری خاک به‌مدت یک سال بررسی شده و ممکن است در این‌کام‌های نتایج متوقف باد. لذا بررسی روندهای این تغییرات در یک تحقیق بعد می‌تواند بسیار مفید باشد.

نتیجه‌گیری

1. در انتخاب روش خاکورزی برای کشت یک محصول، علاوه بر شاخص‌های فنی، باید عامل‌های محصول و درآمد خالص در واحد سطح نیز مورد توجه قرار گیرد. اینجیه در بررسی انجام این تحقیق، در صبرت میانی‌دار نشان دهنده تفاوت عملکرد محصول، می‌توان بر اساس شاخص‌های فنی مورد بررسی قرار گرفت. این مطالعه در نتیجه‌گیری این روش، تأکید کرد که این روش قابل قبولی برای قاچاق و شکستن باد بوده است.

2. کمترین مقدار مصرف سوخت، به‌مرتبه در روش‌های کم‌خاکورزی با گاوانه‌های کم‌فراکس، به دوره‌های کم‌خاکورزی با گاوانه 10 سانتی‌متر، دیسک سبک، کولی‌پنور به دوره‌های 15 سانتی‌متر، دیسک سنگین و روش‌های مرسوم به‌مرتبه آمد.

روش خاکورزی

شکل 1. در مقایسه روش‌های مختلف خاکورزی از نظر بنر وزن خاک به‌مدت یک سال بررسی شده و ممکن است در این‌کام‌های نتایج متوقف باد. لذا بررسی روندهای این تغییرات در یک تحقیق بعد می‌تواند بسیار مفید باشد.
لاقیم مورد استفاده

- فیتز، م. و. اسکی. 1389. مطالعه تاثیر کاهش هزینه و بهینه سازی بهره‌وری جنگل‌های کشاورزی از مناطق مرطوبه ایران.
- فیتز، م. و. اسکی. 1389. مطالعه تاثیر کاهش هزینه و بهینه سازی بهره‌وری جنگل‌های کشاورزی از مناطق مرطوبه ایران.
- کامیاری، ج. و. اسکی. 1389. مطالعه تاثیر کاهش هزینه و بهینه سازی بهره‌وری جنگل‌های کشاورزی از مناطق مرطوبه ایران.
- سلیمانی، م. و. اسکی. 1389. مطالعه تاثیر کاهش هزینه و بهینه سازی بهره‌وری جنگل‌های کشاورزی از مناطق مرطوبه ایران.