ارزیابی پانسیل عملکرد دانه و همپستی گل دیف در سه گونه از جنس براسیکا
(B. napus, B. rapa, B. juncea)

(تاریخ دریافت: 1398/03/04, تاریخ پذیرش: 1398/07/14)

چکیده
توسعه کشت دانه‌های روغنی چهت تأمین روانه‌های خوراکی یکی از اهداف مهم کشور در سرایند به خودکفایی است. بدین منظور یافتن گونه‌هایی از جنس براسیکا که دارای عملکرد بالا داشته و روانه‌های با شکلی نفیسل روش هیبریدی کننده برای مناطق دیگر کشور حائز اهمیت فراوان است. این تحقیق از سال 1381 مدت سال‌های 1382 و 1383 فاز آزمایشگاهی (کد در گلستان) با نام B. juncea و B. napus و B. rapa در جهت تعیین و تعریف کامل توانایی نرسیدن گونه‌ها و قدرت از نظر ججی و تعداد زیاد هر روز با توجه به عملکرد برای دانه هم و کهکشان B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus در سال‌های 1382 و 1383 از نظر ججی و تعداد زیاد هر روز با توجه به عملکرد برای دانه هم و کهکشان B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان هفت‌شهر و سال سال اول و دوم (بین سال‌های 1381 و 1383) از گونه‌ها B. juncea و B. rapa و B. napus از جهت روانه‌های انتخابی متداول در استان H
مقدمه

نتایج بررسی محققان نشان می‌دهند که عملکرد کلارا به طوری عملکرد قدرتی، شرایط آب و هوا، نوع خاک و مهاریت زراعت بستگی داشته و عوامل زندگی و زراعت تغییر کننده رشد و نمو گیاه و در نتیجه عملکرد دانه هستند (23). کریستنس مشاهده کرد که ارقام کلارا نسبت به شرایط آب و هوا و روش زبان‌داری نشان می‌دهند (38). بنابراین این اثبات یافته گرفته که آب و هویایی مکان پیشتر متناسب به ویژگی‌های خاک، شرایط آب و هوا، عملکرد دانه، روزودیسی می‌باشد و باید از کلارا در گزارش‌ها به ترتیب کلارا در نتایج باعث افزایش عملکرد گندم بعد از کلازا، کنترل علف‌های هرز جنی و کاهش عوامل بیماری‌زا غلات می‌شود (21). توزیع (48) رشد اولیه سریع، گل‌های زود هنگام پس از روز، ساقه‌های کوتاه و ضخم، گل‌های بدون گل‌برگ، مقاومت به ریزش در زمان برش آب و لازم برداشت برخورداری از ارقام خود در 5000 تا 8000 عدد در متغیری، قرار و عمدی بودن خوراک خوراکی افزایش و افزایش تعداد خوراکی در سال‌الیک و کاهش تعداد ساقه‌های فرعی را از تصادف مطلوب کلارا تولید عملکرد بالا ذکر نمود.

شناخته‌ها و همکاران (5) در تحقیق اعلام داشت ارقام با عملکرد بالا از تعداد زودتر در کمتری پرخورداری، یعنی ارقام که دوره رسیدگی کوتاهی داشته باشند، می‌توانند از مسیر بالاتری به بهره‌مند شوند. ضمن اینکه ارقام Comet را می‌توان با دلیل دارا بودن زودرسی، تعداد دانه برشتر در کلارا بدان مناسب سازی و عملکرد بالا از در کلارا به شرایط دیم کرونامه‌ها توصیه نمود. مشهد و همکاران (25) نتیجه کرده که افزایش تعداد دانه یک عامل کلیدی در افزایش عملکرد ارقام جدید.
ارزیابی پتانسیل عملکرد دانه و همبستگی صفات در سه گونه از چین پراسیکا:

هدف از اجرای این تحقیق، بررسی و مقایسه عملکرد گونه‌های چین پراسیکا و همبستگی صفات و ارتباط آنها با یکدیگر، جهت شناسایی صفات مؤثر در عملکرد گونه کلزا تحت شرایط دیمی و انتخاب رقم یا ارگام برای منطقه گنبد که شاخص استان گلستان بوده و مناطق مشابه در کشت‌های پاییزه می‌باشد.

مواد و روش‌ها

آزمایش در سه سال زراعی 85-87 و 1382-84 در ابسته تحقیقات کشاورزی گنبد واقع در 5 کیلومتری شرق گنبد اجرا گردید.

ارتفاع منطقه از سطح دریا 25 متر و بر طبق تقسیم‌بندی آب و هوایی کوین در اقلیم مدترانه‌ای گرم و نیمه خشک می‌باشد.

و منشأ کشت‌های گنبد که به ترتیب 55 ردیف طول شریکی و 27 درجه و 16 دقیقه عرض شمایی است. بافت خاک محل انجام آزمایش سیلیکات کریستالی PH 8/8، شوری 3/73 دسی زیمین بر متر، مواد خشی شونده و کربن آلی به ترتیب 20 و 34/6 درصد بود.

یکنون، زنویت پراسیکا Elite, Digger, Adder, Milena, Comet, Amica, Gerinimo 5، زنویت کلازی بهاره شمل

Gerinimo, Magent, Alexandra, Foseto, Parkland, Candel, Tobin, Rainbow, Goldrush, Bard-1, Landrace, Lethbridge, BP-10، خردل زراعی شامل 10-5 و 102/51 در تاریخ کشت مناسب محل انجام کشت گردید.

آزمایش در قالب طرح بلک‌های کامل تصادفی و در سه نمای اجرا شد. محصول کلی مورد کشت در هر سه سال انجام آزمایش، گذشته بود. قابلیت کشت، نمونه‌های خاک از عمق صفر تا 30 سانتی‌متر از سطح خاک نهایی و بر اساس نتایج حاصل، مقادیر کودهای فسفور و پتاس به مقدار 50 کیلوگرم در هکتار اکسید فسفر و اکسید پتاس (به ترتیب از منابع کودی سودر فسفات تری و سولفات نیاتم) قبل از کاشت به زمین

قرار داده شد. مقادیر کود تربیتی به مقدار 50 کیلوگرم در هکتار از دوال خالص (از منبع کود اوره)، به صورت یک سوم قبل از کاشت، یک سوم در مرحله شروع ساکنی و یک سوم در مرحله شروع کاشت به دو میزان داده شد.

در موقع کاشت بیش از 3 میلیون زنگerekی در هکار، 7 (کیلوگرم در هکار) و بعد از استقرار زنگerekی در موردن، تعداد گل‌کردن (مرحله 2 تا 4 برگی) فاصله به بهره‌ها در هر رشدی نظیر می‌گردید. هر کشت شامل 4 خصوصی 5 متر بود. جفت حفظ انگشتی به دو طرف کنار 4 خصوصی کشت آن (یکی از ارقام) انجام گردید. به طور کلی کشت‌ها فضای خانی قرار داده شد. فاصله بین کنارها 3 متر در نظر گرفته شد. برای ت管理制度 بهره و ارتفاع عملکردی از هر کشت 10 بیو به طور تصادفی انتخاب و می‌توان تعداد عوارض در وضعیت كافة انجام داده و کاشت در خورجین محاسبه گردید. در پایان، برای تعيین عملکرد دانه، برداشت محصول از هر چهار خط کاشت و به روند 25 سانتی‌متر حاشیه از بالا و پایین کرت‌ها انجام و سپس وزن هزار دانه محاسبه شد. به‌منظور تعيین صفات مؤثر بر عملکرد دانه از رگرسیون چندگانه بررسی گام به گام به ترتیب 22 و 23 و تجزیه مسری برای بررسی همبستگی‌ها اعطا شد. برای درک روابط علولی بین صفات، نشان صفاتی که بیشترین نقش را در عملکرد دانه ایفا می‌نمایند و شناسایی عوامل به‌هناک مؤثر بر عملکرد از نظر تحریز تحقیق مؤلفه‌های اصلی (32 و 30) اثبات کردند و عوامل به‌دست آمده به‌روش Varimax (وریماکس) که توسط کیور (31) معرفی شده است، چهرش داده شد. تجزیه واریانس برای هر سال بر اساس طرح بلک کامل تصادفی، مقادیر بیانگی با بررسی دانکن در سطح اختلال 5/ 10 تجزیه واریانس مرکب برای سال و همبستگی صفات به‌روش پیرسون صورت گرفت.

هزار دانه معرفی نمودند که تعداد دانه در خورجین دارای بیشترین استحکام مثبت بر روی عملکرد دانه را نشان داد.
جدول 1. میانگین ماهانه برخی از پارامترهای هوایشناسی طی فصول زراعی در استگاه گوند (گلستان)

<table>
<thead>
<tr>
<th>ماه</th>
<th>1382-5</th>
<th>1383-4</th>
<th>1384-5</th>
<th>1385-6</th>
</tr>
</thead>
<tbody>
<tr>
<td>آب</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>روزهای بارانی</td>
<td>22</td>
<td>21/2</td>
<td>9/2</td>
<td>6/4</td>
</tr>
<tr>
<td>روزهای خشک</td>
<td>7/1</td>
<td>3/4</td>
<td>15</td>
<td>8/7</td>
</tr>
<tr>
<td>روزهای بارانی</td>
<td>88/7</td>
<td>12/4</td>
<td>3/3</td>
<td>3/3</td>
</tr>
<tr>
<td>روزهای خشک</td>
<td>37/3</td>
<td>10/6</td>
<td>2/3</td>
<td>2/3</td>
</tr>
<tr>
<td>روزهای بارانی</td>
<td>59/9</td>
<td>18/4</td>
<td>7/1</td>
<td>7/1</td>
</tr>
<tr>
<td>روزهای خشک</td>
<td>21/4</td>
<td>9/8</td>
<td>19/9</td>
<td>7/5</td>
</tr>
<tr>
<td>روزهای بارانی</td>
<td>25/8</td>
<td>14/7</td>
<td>8/5</td>
<td>15/1</td>
</tr>
<tr>
<td>روزهای خشک</td>
<td>33/5</td>
<td>24/2</td>
<td>3/3</td>
<td>3/3</td>
</tr>
<tr>
<td>مجموع</td>
<td>355/5</td>
<td>241/5</td>
<td>142/5</td>
<td>142/5</td>
</tr>
</tbody>
</table>

شرايط آب و هوایی مناسبتر در سال دوم سبب گسترش که در این سال بیشتر از عملکرد دانه حاصل شد. این می‌تواند باعث بالا رفتن بارندگی بیشتری باشد که در مرحله زایمان بیشتری در حال تولید شد. بهنام گرتفند در سال می‌تواند عامل اصلی افزایش محصول تعداد خورجین‌های بیشتر از بوده، و در حالی که بارندگی بالا، به شرح سایر پژوهش‌ها سطح زراعی تربیت‌می‌شود و بهبود کیفیت کشت دارد. همچنین روند تغییر ارتفاع نشان داد که این تغییر تعداد و ارتفاع نشان داد که این تغییر ممکن است به موارد مطالعه اختلاف معنی‌داری در سطح احتمال 0.1/ وجود دارد. مقایسه میانگین (جدول 4) بین ارقام از نظر صفات فوق اختلاف معنی‌داری را در سطح احتمال 0.05/ نشان دادند. مقایسه B. juncea و B. napus (B. napus از گونه‌های بهره‌برداره B. juncea و Comet به ترتیب 248/6 و 229/5 کیلوگرم در هکتار) بیشتر عملکرد دانه را نشان دادند. این ارقام در مقایسه با ارقام دیگر از تعداد خورجین در بانه زیاد تا مناسب، تعداد دانه در خورجین کم تا بین‌متوسط و SPSS و Irristat Mstate برای تجزیه‌های فوق از نرم‌افزارهای استفاده شد.

نتایج و بحث

آزمون بارنتست نشان داد واریانس خطاهای آزمایش برای صفات تعداد روز بارانی، ارتقاء بوته، تعداد خورجین در بوته، عملکرد دانه، درصد روغن و عملکرد روغن در سال بایستی هستند. به نظر می‌رسد بین واریانس خطاهای آزمایش اختلاف معنی‌داری وجود نداشته باشد. این نتایج حاصل از تجزیه واریانس مرکب نشان داد (جدول 2) بین سال‌ها از نظر صفات تعداد روز تا نشان دادن عملکرد روغن و عملکرد دانه در سطح احتمال 0.1/ اختلاف معنی‌داری وجود ندارد. مقایسه B. juncea و بین سال‌ها از نظر صفات فوق هم معنی‌داری را داشتند. در سال دوم (210 کیلوگرم در هکتار) و بسیار بالا و سوم (به ترتیب 1717 و 1575 کیلوگرم در هکتار) به دست آمد. این به عامل محیطی سال تولید دانه کارا در معنی‌داری داشته است.

همچنان که از جدول اطلاعات هوایشناسی (جدول 1) پیدا شد.
جدول 2. تجربه واریانس مرکب (میانگین مربوطات) صفات تحت بررسی

<table>
<thead>
<tr>
<th>عامل</th>
<th>دارد</th>
<th>درصد</th>
<th>عدم</th>
<th>درصد</th>
<th>درج</th>
<th>همبستگی S.O.V</th>
<th>آرادی</th>
<th>معنی نویسه</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>**</td>
<td>4/1</td>
<td>1059/61</td>
<td>**</td>
<td>1988/77</td>
<td>**</td>
<td>0/78</td>
<td>**</td>
<td>0/54</td>
</tr>
<tr>
<td>سال</td>
<td>6/1</td>
<td>2296/8</td>
<td>2/10</td>
<td>330/5</td>
<td>1/0</td>
<td>314/23</td>
<td>0/19</td>
<td>0/77</td>
<td>0/38</td>
</tr>
<tr>
<td>سال</td>
<td>**</td>
<td>1258/24</td>
<td>1/0</td>
<td>1018/11</td>
<td>**</td>
<td>0/31</td>
<td>**</td>
<td>0/25</td>
<td>0/38</td>
</tr>
<tr>
<td>سال</td>
<td>**</td>
<td>598/52</td>
<td>0/54</td>
<td>149/13/12</td>
<td>**</td>
<td>275/14</td>
<td>**</td>
<td>31/25</td>
<td>0/27</td>
</tr>
<tr>
<td>سال</td>
<td>3/2</td>
<td>2/14</td>
<td>0/49/3/2</td>
<td>0/14/9/0</td>
<td>0/65/0/65</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
<td>0/59</td>
</tr>
</tbody>
</table>

جدول 3. مقایسه میانگین‌های صفات تحت بررسی در سال‌های مختلف

<table>
<thead>
<tr>
<th>عامل</th>
<th>دارد</th>
<th>درصد</th>
<th>عدم</th>
<th>درصد</th>
<th>درج</th>
<th>تعداد روز</th>
<th>همبستگی S.O.V</th>
<th>آرادی</th>
<th>معنی نویسه</th>
<th>CV%</th>
</tr>
</thead>
<tbody>
<tr>
<td>سال</td>
<td>**</td>
<td>2/10</td>
<td>0/27</td>
<td>0/56</td>
<td>0/27</td>
<td>7/4</td>
<td>0/5</td>
<td>**</td>
<td>0/54</td>
<td></td>
</tr>
<tr>
<td>سال</td>
<td>**</td>
<td>4/1</td>
<td>1059/61</td>
<td>**</td>
<td>1988/77</td>
<td>**</td>
<td>0/78</td>
<td>**</td>
<td>0/54</td>
<td></td>
</tr>
</tbody>
</table>

در هر سال میانگین‌های دارای حداقل یک حرف مشترک تفاوت معنی‌داری با استفاده از آزمون دانکین در سطح احتمال 0/05 تعریف شده.

عملکرد بالاتری برخوردار خواهد بود. آنها رودرسی‌های یک صاحب‌گرایی باید عملکرد دانه را به ارقام کلی تحت شرایط دیگر نمودند.

وزن هزار دانه متوسط برخوردار بوده. ضمن اینکه تعداد روز ارزیابی متوسطی را نشان دادند. این نتایج تجربه‌های ژداین و مرکب دیوار می‌تواند ارقامی که عملکرد دانه بالای‌ی دارد با نظر ارزیابی عملکرد دریک حالت تعادل و موازه داشته. این دارند به ترتیب دارای واریانس کننده (14) از مطالعه‌های گزارش کرده‌اند.

به‌طور کلی، عملکرد دانه متوسط برخوردار بوده است. این نتایج از ارقام که عملکرد دانه بالایی دارد با نظر ارزیابی دریک حالت تعادل و موازه دارند. این دارند به ترتیب دارای واریانس کننده (14) از مطالعه‌های گزارش کرده‌اند.

به‌طور کلی، عملکرد دانه متوسط برخوردار بوده است. این نتایج از ارقام که عملکرد دانه بالایی دارد با نظر ارزیابی دریک حالت تعادل و موازه دارند. این دارند به ترتیب دارای واریانس کننده (14) از مطالعه‌های گزارش کرده‌اند.

به‌طور کلی، عملکرد دانه متوسط برخوردار بوده است. این نتایج از ارقام که عملکرد دانه بالایی دارد با نظر ارزیابی دریک حالت تعادل و موازه دارند. این دارند به ترتیب دارای واریانس کننده (14) از مطالعه‌های گزارش کرده‌اند.

591
<table>
<thead>
<tr>
<th>Name</th>
<th>bp</th>
<th>lat</th>
<th>lon</th>
<th>alt</th>
<th>speed</th>
<th>climb</th>
<th>descent</th>
<th>avg_climb_rate</th>
<th>avg_descent_rate</th>
<th>avg_speed</th>
<th>course_miles</th>
<th>verticaldesc</th>
<th>verticalclimb</th>
<th>total ASC</th>
<th>total DESC</th>
<th>total vertical</th>
<th>avg vertical</th>
<th>avg course</th>
<th>altitude_gain</th>
<th>altitude_loss</th>
<th>total distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecumber</td>
<td>64</td>
<td>73</td>
<td>26</td>
<td>44</td>
<td>74</td>
<td>67</td>
<td>52</td>
<td>3.5</td>
<td>3.3</td>
<td>3.9</td>
<td>2.4</td>
<td>3.7</td>
<td>6.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1.7</td>
<td>0.8</td>
<td>1.2</td>
<td>1.8</td>
<td>0.6</td>
<td>12.2</td>
</tr>
<tr>
<td>Rainbow</td>
<td>33</td>
<td>45</td>
<td>30</td>
<td>45</td>
<td>52</td>
<td>48</td>
<td>43</td>
<td>3.3</td>
<td>3.2</td>
<td>3.5</td>
<td>2.5</td>
<td>3.7</td>
<td>6.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1.7</td>
<td>0.8</td>
<td>1.2</td>
<td>1.8</td>
<td>0.6</td>
<td>12.2</td>
</tr>
<tr>
<td>Turnip</td>
<td>26</td>
<td>42</td>
<td>20</td>
<td>42</td>
<td>52</td>
<td>45</td>
<td>45</td>
<td>3.5</td>
<td>3.3</td>
<td>3.9</td>
<td>2.4</td>
<td>3.7</td>
<td>6.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1.7</td>
<td>0.8</td>
<td>1.2</td>
<td>1.8</td>
<td>0.6</td>
<td>12.2</td>
</tr>
<tr>
<td>Candel</td>
<td>26</td>
<td>42</td>
<td>20</td>
<td>42</td>
<td>52</td>
<td>45</td>
<td>45</td>
<td>3.5</td>
<td>3.3</td>
<td>3.9</td>
<td>2.4</td>
<td>3.7</td>
<td>6.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1.7</td>
<td>0.8</td>
<td>1.2</td>
<td>1.8</td>
<td>0.6</td>
<td>12.2</td>
</tr>
<tr>
<td>Rainbow</td>
<td>33</td>
<td>45</td>
<td>30</td>
<td>45</td>
<td>52</td>
<td>48</td>
<td>43</td>
<td>3.3</td>
<td>3.2</td>
<td>3.5</td>
<td>2.5</td>
<td>3.7</td>
<td>6.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1.7</td>
<td>0.8</td>
<td>1.2</td>
<td>1.8</td>
<td>0.6</td>
<td>12.2</td>
</tr>
<tr>
<td>Turnip</td>
<td>26</td>
<td>42</td>
<td>20</td>
<td>42</td>
<td>52</td>
<td>45</td>
<td>45</td>
<td>3.5</td>
<td>3.3</td>
<td>3.9</td>
<td>2.4</td>
<td>3.7</td>
<td>6.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1.7</td>
<td>0.8</td>
<td>1.2</td>
<td>1.8</td>
<td>0.6</td>
<td>12.2</td>
</tr>
<tr>
<td>Candel</td>
<td>26</td>
<td>42</td>
<td>20</td>
<td>42</td>
<td>52</td>
<td>45</td>
<td>45</td>
<td>3.5</td>
<td>3.3</td>
<td>3.9</td>
<td>2.4</td>
<td>3.7</td>
<td>6.4</td>
<td>1.2</td>
<td>0.5</td>
<td>1.7</td>
<td>0.8</td>
<td>1.2</td>
<td>1.8</td>
<td>0.6</td>
<td>12.2</td>
</tr>
</tbody>
</table>
جدول 5: ضرایب همبستگی بین صفات مورد بررسی

<table>
<thead>
<tr>
<th>عاملکرد درصد</th>
<th>وزن هزار دانه</th>
<th>تعداد دانه</th>
<th>ارتفاع دانه</th>
<th>تعداد روز تا رسیدن</th>
<th>فرآیند</th>
<th>تعداد روز</th>
<th>ارتفاع بیشتر در بوره</th>
<th>تعداد خورجین در بوره</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/65</td>
<td>1</td>
<td>0/43</td>
<td>0/3</td>
<td>1</td>
<td>0/45</td>
<td>0/65</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0/65</td>
<td>1</td>
<td>0/43</td>
<td>0/3</td>
<td>1</td>
<td>0/45</td>
<td>0/65</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0/65</td>
<td>1</td>
<td>0/43</td>
<td>0/3</td>
<td>1</td>
<td>0/45</td>
<td>0/65</td>
<td>1</td>
</tr>
</tbody>
</table>

تغییرات حرارتی و رطوبتی در سال آزمایش بود (جدول 1). در سال 0/65 نسبت به سال‌های اول و دوم بدلیل کاهش بردن هوا و کاهش بارندگی ارقام زودتر به گل رفته و زودتر مرحوله و سری‌گردی را یافته بودند. (جدول 2). در تحقیق دیگر چنین تیتیج‌های نیز گزارش گردید (10). انتخاب زنوتیب سال برازند انتخاب بیشتر و تعداد خورجین در بوره معنی‌دار گردید. این حاکی از این است ارقام که در هواهای خنکتری رسید کرده‌اند از ارتفاع و تعداد خورجین در بوره بیشتر برخوردار بوده‌اند. انتخاب بیشتر و تعداد خورجین در بوره بیشتر برخوردار بوده‌اند. (جدول 3). به مناسبت، بین آب و هوایی سال‌های سال آزمایش (جدول 1) در ماه‌های اسفند، فروردین و آذر، بیشتر و نسبت به سال دوم ارقام درست‌تر در سال آزمایش درست‌تر بوده‌اند. انتخاب بیشتر در حالت خفیف می‌تواند تدوین بیشتری همبستگی در بوره بیشتر برخوردار بوده‌اند. (جدول 4). انتخاب زنوتیب سال برازند انتخاب بیشتر و تعداد خورجین در بوره بیشتر برخوردار بوده‌اند. (جدول 5). بین سال‌های اول و دوم بود (جدول 3). به نظر می‌رسد مساعد بودن انتخاب بیشتر و نسبت به سال دوم کاهش در سال دوم دلیل انتخاب عاملکرد دانه در سال دوم بوده. ضرایب همبستگی (جدول 5) بین صفات نشان داد که بین تعداد روز تا رسیدگی و ارتفاع بیشتر بوده همبستگی مثبت (0/65).
جدول 4: برآوره برگسیون مدل رگسیون چند متغیره به‌روش گام به‌گام برای عملکرد دانه به‌عنوان متغیر واپسی و دیگر صفات به‌عنوان متغیرهای مستقل تحت شرایط دیم

<table>
<thead>
<tr>
<th>ضریب رگرسیون</th>
<th>ضریب تبیین</th>
<th>عرض از مبدا</th>
<th>صفت وابسته</th>
<th>مرحله</th>
<th>تعداد روزهای سیسدن</th>
<th>تعداد خورجین در بوته</th>
<th>عملکرد دانه</th>
<th>درصد رون</th>
<th>درصد رون</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.65</td>
<td>0.57</td>
<td>12</td>
<td>1</td>
<td>1793/2354</td>
<td>0/0/78/1</td>
<td>0/0</td>
<td>1</td>
<td>0/0/78/1</td>
<td>0/0/78/1</td>
</tr>
<tr>
<td>0.66</td>
<td>0.57</td>
<td>12</td>
<td>1</td>
<td>1793/2354</td>
<td>0/0/78/1</td>
<td>0/0</td>
<td>1</td>
<td>0/0/78/1</td>
<td>0/0/78/1</td>
</tr>
<tr>
<td>0.55</td>
<td>0.36</td>
<td>12</td>
<td>1</td>
<td>1002/2354</td>
<td>0/0/78/1</td>
<td>0/0</td>
<td>1</td>
<td>0/0/78/1</td>
<td>0/0/78/1</td>
</tr>
<tr>
<td>0.55</td>
<td>0.36</td>
<td>12</td>
<td>1</td>
<td>1002/2354</td>
<td>0/0/78/1</td>
<td>0/0</td>
<td>1</td>
<td>0/0/78/1</td>
<td>0/0/78/1</td>
</tr>
</tbody>
</table>

شایان ذکرکست ضرایب رگرسیون صفات فوق به‌ترتیب همچنین تعداد خورجین در بوته به تعداد دانه در خورجین و وزن هزار دانه همبستگی منفی (0.56-0.75) معنی‌دار را در سطح احتمال 1% نشان داد. به‌عنوان جمله ای از عملکرد در یک حالت نموداینوازه به‌سر می‌برید به‌طوری که کاهش با افزایش هر جرای افزایش معنی‌دار است (7 و 8). تعداد دانه در خورجین و وزن هزار دانه با عملکرد دانه همبستگی منفی و غير معنی‌داری نشان دادند. عدم معنی‌داری همبستگی بین تعداد دانه در خورجین با عملکرد دانه با تابیت دیگر محقق شد.

به‌منظور مشخص نمود صفات مؤثر بر عملکرد دانه تجزیه رگسیون به‌روش گام به‌گام برای صفت فوق به‌عنوان متغیر واپسی و با استناد داده‌های صفت تعداد روزها سیسدن، تعداد خورجین در بوته و اندیش معنی‌داری همبستگی و رگسیون مشخص گردید. به‌جز درصد رون قابل مستان در پایداری دانه و بودن ولی به‌عنوان متغیر مهم در سه rib به‌عنوان رگسیون گام به گام وارد مدل کردن. منصوري و سلطانی ایجاد (19) در تحقیق بر روی کندوی اگزکس کردند تعداد شاخه‌های در بوته به‌کوش همبستگی معنی‌دار با عملکرد دانه به‌عنوان متغیر مهم در دوی رگسیون گام به گام وارد مدل گردید و تا مرحله نهایی نیز در مدل باقی ماند. صفات تعیین خورجین در بوته و درصد رون قابلیت رونتری رگسیون گام به‌گام اثر معنی‌دار داشتند.

در تجزیه عاملها (جدول 8) چهار عامل استخراج شد.
جدول 7. تجزیه مسیر صفات مؤثر بر عملکرد دانشجو اساس تجزیه رگرسیون تحت شرایط دم

<table>
<thead>
<tr>
<th>صفات</th>
<th>مرتبه غیر مستقیم از طریق تعداد روز تا رسیدن تعداد خبوری در بوته درصد روان</th>
<th>تعداد خبوری در بوته درصد روان</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/54</td>
<td>1/171 0/44</td>
<td>0/47</td>
</tr>
<tr>
<td>0/3</td>
<td>0/182 0/182 0/21 0/276 0/584</td>
<td>0/47</td>
</tr>
<tr>
<td>0/39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0/36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| اثرات بالای‌مقدار=0/18 |

جدول 8. بار عمل‌ها و واریانس توجیه شده، جمع کل و واریانس توجیه شده و ریشه‌های منحصربه‌فرد

<table>
<thead>
<tr>
<th>صفات</th>
<th>بار عمل‌ها</th>
<th>چهارم سوم دوم اوال</th>
</tr>
</thead>
<tbody>
<tr>
<td>روز تا رسیدگی</td>
<td>0/575 0/575 0/575 0/575 0/575</td>
<td>0/575 0/575 0/575 0/575 0/575</td>
</tr>
<tr>
<td>ارتفاع بوته (سانتی‌متر)</td>
<td>0/954 0/954 0/954 0/954 0/954</td>
<td>0/954 0/954 0/954 0/954 0/954</td>
</tr>
<tr>
<td>تعداد خبوری در بوته</td>
<td>0/780 0/780 0/780 0/780 0/780</td>
<td>0/780 0/780 0/780 0/780 0/780</td>
</tr>
<tr>
<td>تعداد دانه در خبوری</td>
<td>0/699 0/699 0/699 0/699 0/699</td>
<td>0/699 0/699 0/699 0/699 0/699</td>
</tr>
<tr>
<td>وزن هزار دانه (گرم)</td>
<td>0/313 0/313 0/313 0/313 0/313</td>
<td>0/313 0/313 0/313 0/313 0/313</td>
</tr>
<tr>
<td>درصد روان</td>
<td>0/618 0/618 0/618 0/618 0/618</td>
<td>0/618 0/618 0/618 0/618 0/618</td>
</tr>
<tr>
<td>عملکرد دانه (کیلوگرم در هکتار)</td>
<td>0/155 0/155 0/155 0/155 0/155</td>
<td>0/155 0/155 0/155 0/155 0/155</td>
</tr>
<tr>
<td>عملکرد روان (کیلوگرم در هکتار)</td>
<td>0/075 0/075 0/075 0/075 0/075</td>
<td>0/075 0/075 0/075 0/075 0/075</td>
</tr>
</tbody>
</table>

بار واریانس توجیه شده
جمع کل و واریانس توجیه شده
ریشه‌های منحصربه‌فرد

* ضریب عاملی معنی‌دار

چون ضرایب مانهای بانکی مانده خیلی کم بود در تجربه اجازه استخراج عامل‌های بیشتر را نداد. که به عامل اول و 2/94% 0/94%% که سن عامل اوال 3/26% 3/26% و 0/16% 0/16% بود. در عامل اوال صفات عملکرد دانه و عملکرد روان از بار عاملی بایا (بی‌بستگی 0/48% 0/48% 0/48% 0/48% 0/48%) خروج می‌شوند. این عمل‌ها می‌تواند تحت عنوان عامل به‌هم‌هستی نام‌گذاری کرده و سپس داخلی دید، می‌توان این عمل را تحت عنوان عامل سرمایه‌های نابیکینگی با ساختار داتلی و پیام خاصی خود در فن‌آوری نامید.

595
دنیایی با ژونیپریتا بای عاملکرد دانه بالاتر می‌گردد. در مطالعه‌های گیاهی نیز بهترین اثر مستقیم متیت روی عاملکرد دانه مربوط به تعداد خورجین در احداث سطح اعلام شد و از آن به‌عنوان یک شاخص گریزی جهت حصول ژونیپریتا بای عاملکرد دانه بالاتر پایه (۱۴). در حالی که صفری و باقی نشان داد که صفت تعداد دانه در خورجین دارای بیشترین اثر مستقیم متیت (۱۴/۰) روی عاملکرد دانه بوده است. در مطالعه‌های دیگر نیز بیشترین اثر مستقیم متیت روی عاملکرد دانه مربوط به عاملکرد روغن (شیت۵) از ابزار مستقیم ان صفت از طریق تعداد خورجین در بینه (۲۲) اعلام شد می‌توان اثر بیشترین اثر مستقیم متیت روی عاملکرد روغن در بینه روی عاملکرد دانه ۳۹۲/۰، دشت می‌باشد. در نهایت ارقام و Comet و اسکندرهای دانه و روغن‌بندی به‌عنوان یک شاخص گریزی در شرایط دیم کند معرفی نمود.

مسیرهای دیم شناخت.

1. آخوندی، ن. م. رشدی ع. حسن‌زاده قورت ت. ت. رنجی نگان ت. و. پربرمادی و. همايونی. ۱۳۸۵. جذبیت مقالات نهمین کنگره علوم زراعت و اصلاح نباتات ایران. پردیس اوریخان. دانشگاه تهران.
2. برهمان. ر. م. فرجی. ۱۳۸۵. تحقیقات مشخصات کیفی و میزان صفات مؤثر در عملکردهای بروسی بررسی شده. تحقیقات بهره‌برداری در اصلاح و افزایش حیاتی. نهال و نیکا. درک. چکیده مقالات نهمین کنگره علوم زراعت و اصلاح نباتات ایران. پردیس اوریخان. دانشگاه تهران.
6. خرازی. ع. و. س. بورواد. ۱۳۸۱. اثر تأثیر کشت اکسنت و کشت در ارتفاع بروز و عملکرد دانه کارگاه در شرایط دیم. چکیده مقالات نهمین کنگره علوم زراعت و اصلاح نباتات ایران. دانشکده کشاورزی دانشگاه گیلان.
7. سرمدی‌نیا. غ. و. ل. سبزی. ۱۳۸۲. تحقیقات در حیاتی. انتشار جهان دانشگاهی مشهد.
ارزیابی پتانسیل عملکرد دانه و همبستگی صفات در سه گونه از جنس پراسیکا.

