مطالعه پارامترهای زنتیکی صفات مرتب با آندوسپرم در تلاقی‌های برنج

شعله کیانی، نادعلی باباییان جلدلار، غلامعلی رنجی، سیدکمال کاظمی نار و محمد نوروزی

(تاریخ دریافت: ۱۷/۱۲۸۶/۶، تاریخ پذیرش: ۱۲/۱۲۸۶/۶)

چکیده
به نظر مطالعه نحوه عمل زن در ارقام برنج از لحاظ کیفیت پخت برای صفات مظهر در چرخ حصارت زلایشی شدن، غلظت زل و میزان آمپلون، چهار رقم برتر یا سطح متفاوتی از صفات، مورت مطالعه بردار گرندند. ده جمعیت والدین، ۲۲۰۲، ۲۵۳۵، آزمایشگاه برای دو تلاقی سنگ طارم‌گرده و «IRRI»، بردار گرندند. معمولاً در شدید یکی از آثار مقاله پژوهش داد که علاوه بر عمل افزایش-غالتی، اثر مقاول خالی دو زنی مناسب دارد به‌طور چهار صفت در این حصارت زلایشی شدن در تلاقی سنگ طارم‌گرده. در حالات دو زنی، ایستایی از نوگ مضافات برای صفات غلظت زل و میزان آمپلون در هر دو تلاقی مصوب دارد. به‌طور دوچرخه عضوی و چندباره در تشکیل IRRI در IRRI برای این صفات غلظت زل و میزان آمپلون در هر دو تلاقی مصوب دارد. به‌طور دوچرخه عضوی و چندباره در تشکیل IRRI در IRRI برای این صفات غلظت زل و میزان آمپلون در هر دو تلاقی مصوب دارد.

واژه‌های کلیدی: تجزیه میانگین نسل‌ها، صفات آندوسپرم، عمل زن، کیفیت داته، برنج

مقدمه
شروط بی‌نرسی‌سازی ممکن. میزان درجه حصارت زلایشی شدن از میزان آمپلون، غلظت زل و درجه حصارت زلایشی شدن از صفات مهم کیفیت پخت برنج هستند. درجه حصارت زلایشی شدن عبارت از مدت زمان لازم جهت پخت داته‌های برنج می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گرم می‌باشد. (۱۲) این صفت از خصوصیات فیزیکی ناشناخته‌است که در آن مولکول‌های ناشناخته به طور غیر قابل گشتی در آب گر
درجه حرارت زالیتنی شدن با درجه حرارت زالیتنی شدن بالا یا بالا نمی‌باشد. در ارقام بالای 45 درجه حرارت زالیتنی شدن بالا، بینج پخته شده سفت و خشک می‌شود. در صورتی که در ارقام بالای 40 درجه حرارت زالیتنی شدن بالا، بینج پخته شده سفت و خشک می‌شود. میزان آلیموئز بالا از سردترین جزئیات رونما و مزایای مادری و سیستولاسی مادری را ارائه می‌دهد و می‌تواند اختلاف بین نسل و تلاقی منتقلات آنها را نشان دهد.

این تحقیق نشان می‌دهد که در ارقام بالای 40 درجه حرارت زالیتنی شدن بالا، بینج پخته شده سفت و خشک می‌شود. میزان آلیموئز بالا از سردترین جزئیات رونما و مزایای مادری و سیستولاسی مادری را ارائه می‌دهد و می‌تواند اختلاف بین نسل و تلاقی منتقلات آنها را نشان دهد. بیان کننده ماینیکر (24) در بررسی نحوه عمل زن روی BC_2, BC_1, F_2, F_1 و P_1 نتایج متغیر آنها برای ده تلاقی بینج با استفاده از روش تجزیه و مانگین نسل‌ها درمانی که در آن ایستاده و سیستولاسی تقدیب بهترین مدل از بین جهت‌الافزایی، ایستادگی، سیستولاسی مادری و مادری دارا و اعمال می‌تواند به صورت تکمیلی و در هر تلاقی عمل زن به صورت مضاعف است و در یک تلاقی نیز هیچگونه تسبیح تلاقی وجود نداشته، چنان‌که در این مقاله به صورت مدل افزایشی- و بالاتریدی صفت درجه حرارت زالیتنی شدن را به صورت مدل افزایشی- بالاتریدی صفت درجه حرارت زالیتنی شدن را به صورت مدل افزایشی- و بالاتریدی صفت درجه حرارت زالیتنی شدن را به صورت مدل افزایشی- و بالاتریدی صفت درجه حرارت زالیتنی شدن را به صورت مدل افزایشی- و بالاتریدی صفت درجه حرارت زالیتنی شدن را به صورت مدل افزایشی- و بالاتریدی صفت درجه حرارت زالیتنی شدن را به صورت مدل افزایشی- و بالاتریدی صفت درجه حرارت زالیتنی شدن را به صورت مدل افزایشی- و بالاتریدی
زالینه شدن مورد بررسی قرار گرفت. برگردی برخوردار حال واقعی به باشکوهی، جهت افزایش مصرف مورد بررسی به
ازامیشناک تعیین یکنواختی منقل و مورد تعطیلی قرار گرفتند. برای اندام‌هایی صفت‌های زالینه شدن در روش لیت و همکاران
(۲۰) اندام‌هایی غلظت زای روش کاگامبکس و همکاران
(۲۱) و زمان و همکاران (۲۲) و برای تعیین مثابه آزمایشین از روش جولینون (۱۱) استفاده شد. تعداد بدر مورد نیاز برای هر تجربه برای ولده و فernalین
تکرار (نر) براي F۱ بین ۲۵۰ تا ۸۰۰، برای هر تالاکی برگشتی
ton ۳۰۰ تا ۸۰۰ بذر (۱۶ و ۲۳) مورد اندام‌گیری قرار گرفتند.

تجربه واریانس
برای انواع تجربه زنینی صفات مورد بررسی، ابتدا تجربه واریانس سایهای تغییرات گذشته‌ها برای کل صفات در
دو تالاکی مورد بررسی انجام شد. میانگین مشاهداتی، اشتیاق استفاده و از میزان ۷ به منظور دست‌بستی در شدن اختلاف دوی
والدین و خانواده‌های متقابل از سطح BC۱، F۱، F۲ و BC۲ صفات مورد بررسی محاسبه کرده (۱۷) رد

افزایش
پارامترهای زنینی و مدل‌های نهایی در صفات و تالاکی‌های
مورد بررسی، توسط روش کم‌ترین توان‌های دوم وزنی از برکارود و
برازش‌های داده شدند (۲۲ و ۲۳):

\[M = (c'wc)^{-} \] (c'wy)

متریس M که ماتریس ستونی از پارامترهای برکارود شده، W، متریس
وزن‌ها که در واقع عکس واریانس میانگین نسل‌ها می‌باشد، \(\alpha \) متریس مقادیر مورد انتخاب میانگین نسل‌های حاصل از یک
تالاکی، \(c'wc \) متریس واریانس و کوواریانس برازش برکارود
امشته استاندارد پارامترهای زنینی، Y متریس ستونی میانگین
هر نسل است. برای غلظت مدل مناسب و تعیین مدل نهایی توسط
آزمون مربع کای و وزنی آزمون می‌شود (۲۱).

با شکل و ظاهر بردن تأثیر می‌گذارند. شیپ و همکاران (۲۰)، اثرات ایستاده و سیکولاراسی را از عوامل مهم کننده
صفات متغیر با کیفیت بردن از جمله: میزان آمپلوز و درجه
حرارت زالینه شدن دانسته و برای صفت غلظت زل اثر غلیط
را معنی‌دار گزارش کردند.

هدف از این مطالعه بررسی نحوه توارث صفات کمی
اندوسپرم بردن با استفاده از مدل‌های زنینی می‌باشد. [d] جزء افزایشی \(h_x \) و جزء افزایشی آرف \(h_y \) اشاره به هر نوع افزایشی افزایشی
Aaa و اجرا محقق، \(i_x = h_x + h_y \) اشاره محقق، \(i_y = h_x \) اشاره
متقابل غلیط خاکی از طریق میانگین‌های ده نسل یک تالاک
قابل برکارود می‌باشد و با داشتن نحوه توارث این صفات روی
اصلاحی آن‌ها تعیین خواهد شد.

مواد و روش‌ها
در این آزمایش چهار رزم بردن اسکای سنج طارم، کرده،
MORRI و ۱۲۲۹ مورد بررسی قرار گرفتند (جدول ۱).

by منظور نشان و مطالعه زنینی و نحوه توارث بردنی
آنها، در تابستان ۱۳۸۵ تالاکی‌های ممکن بین ارقام
(İRRI1 × ۱۲۲۹) و (کرده × نسل طارم) به سوی محقق انجام
گرفت و به‌درهای F۱ تولید شد. در حال زراعی ۱۳۸۶ تالاکی از
به‌درهای F۱، جهت اندازه‌گیری برکارود با ولده و نیز
خودگشایی شدن بوم‌ها به منظور ایجاد بذر F۲ در مزرعه
تحقیقاتی مجمع علوم شناوری و منابع طبیعی سیاری کاشته.

شدن آزمایشی در قالب طرح تجربه کامل تصادفی در سه تکرار
و با کرمان شامل ۹ دسته ۵ تا ۹ لیتری برای ولده و نسل اول
۹ رشدی در سه تالاک بکارکشی اول، دوم و نسل دوم که
فصل دو رشدی و دو بهترین از هر فصل ۲۵ نسل دارد.

برای آزمایش گرفتن، به‌درهای F۱ دسته‌بندی ده نسل
B۱(F۱×P۱), B۲(F۱×P۲),... B۱(F۱×P۱), B۲(F۱×P۲)
را حاصل از در
B۱(RF۱×P۱), B۲(RF۱×P۲)
Tالاک برای سه صفت میان آمپلوز، غلظت ZL و درجه حرارت
جدول ۱. مشخصات ارقام مورد مطالعه در این آزمایش

<table>
<thead>
<tr>
<th>AC</th>
<th>GC</th>
<th>GT</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۰/۴</td>
<td>۳۳/۸</td>
<td>۳/۳</td>
</tr>
<tr>
<td>۱۱</td>
<td>۲۵/۵</td>
<td>۶/۱</td>
</tr>
<tr>
<td>۲۷</td>
<td>۱۹/۳</td>
<td>۶/۳</td>
</tr>
<tr>
<td>۲۸/۸</td>
<td>۳۲/۲</td>
<td>۷</td>
</tr>
</tbody>
</table>

آزمون آثار سیتوپلاسمی

از آنجایی که آزمون سیتوپلاسمی در نسلهای مختلف تاثیر گرفته، باعث نمایشی‌های پایداری نتایج بی‌نیازی می‌گردد. چنان‌که نمایش‌های را در نسلهای حاصل از یک تکلاقی می‌توان به صورت زیر تشخیص داد (۱۴):

\[
F_{1} - R_{1} \quad B_{1} - R_{1} \quad B_{1} - R_{1}
\]

که بر اساس روش کمپانی توانهای دوم وّرزنی (۷۱) و تخمین آماره مربع کای با درجه آزادی دو پارامتر (۲) پرآورده می‌شود.

آزمون آثار اپستاتیزی

آتار اپستاتیزی معمولاً با اندازه‌گیری مقدار مشخص می‌شود. در بافت تریبولیند و بر اساس مدل پوشی (۲۶)، حضور اپستاتیزی با مدل دو پارامتری در چهر (\(h' = h_1 + h_2 \)) و \(m \) نشان‌دهنده مشخصی را نشان می‌دهد.

\[
F' = \frac{1}{2} \left(\overline{F_1} + \overline{F_2} \right)
\]

\[
P' = \frac{1}{2} \left(\overline{B_1} + \overline{B_2} \right)
\]

tخمین زده شد مقدار مربع کای با درجه آزادی برابر شده است.

\[
h' = (m + h_1 + h_2)
\]

در صورت عدم کفایت مدل دو پارامتری (زمانی)

که مربع کای معنی‌دار می‌شود، آزمون با مدل سه پارامتری که مربع کای معنی‌دار می‌شود، آزمون با مدل سه پارامتری که مربع کای معنی‌دار می‌شود، آزمون با مدل سه پارامتری
در این مقاله، با توجه به جزئیات جامعه‌ای و اشارات آماری، نشان داده شد که به جز در تلاقی با اثر ترکیبی، در تلاقی متقابل و ترکیبی، وجود داشته باشد (جدول 4).

برآورد وراثت پذیری عمومی با استفاده از روش واریانس جمعیت‌ها از طریق فرمول زیر قابل برآورد است:

\[\delta^2_g = \delta^2_g + \delta^2_c \]

که در تلاقی زنگی (\(\delta^2_z \)) برای تفاوت واریانس نسل \(2 \) و \(\delta^2 \) از واریانس محیطی (\(\delta^2_e \)) می‌باشد. واریانس محیطی از دو روش محاسبه گردید: 1) بر اساس میانگین سه نسل و 2) نسل ۱ و ۲:

\[\delta^2_c = \left(\frac{\hat{\sigma}^2_c + \hat{\sigma}^2_P + \hat{\sigma}^2_R}{3} \right) \]

(2) واریانس محیطی برآورد شده از روش کامپیوتری توانایی دوم وراثت پذیری خصوصی نیز از طریق فرمول زیر محاسبه شد:

\[h^2 = \frac{2\delta^2_F - (\delta^2_ic + \delta^2_bc)}{\delta^2_F} \]

(8)

تعادل عمیق‌های موزUK

تعداد ذهن‌های کنترل کننده صفت به استفاده از میانگین و واریانس نسل‌ها قابل برآورد است. سه فرمول برای برآورد تعداد ذهن (GF) استفاده گردید (6 و 18):

\[n_1 = \frac{(\bar{P}_1 - \bar{P}_2)^2}{8(\delta^2_F - \delta^2_i)} \]

\[n_2 = \frac{(\bar{P}_1 - \bar{P}_2)^2}{8(\delta^2_F - (0/258^2P_1 + 0/258^2P_2))} \]

\[n_3 = \frac{(\bar{P}_1 - \bar{P}_2)^2}{8(\delta^2_F - (\delta^2_bc + \delta^2_ic))} \]

نتایج و بحث

نتایج حاکی از آن است که به کنگ نسل‌ها برای صفات مورد مطالعه، به جز در تلاقی «IRRI» برای صفت دمای زاگنهتی شدن، اختلاف معنی‌داری وجود داشت. بنابراین با توجه به میانگین مربوط نسل‌ها که در نمود موارد سطر احتمالی یک درصد معنی‌دار شدند، می‌توان نتیجه گرفت که به نسل‌ها از نظر صفات مورد بررسی تفاوت‌های زنگی قابل ملاحظه‌ای وجود نداشت. به دلیل عدم کفايت مدل دو پارامتری "نم‌باش". به دلیل عدم کفايت مدل دو پارامتری "نم‌باش".
جدول 2. تناوب تجربه واریانس برای صفات غلظت زل، درجه حرارت زلاته شدن و میزان امپلوز مورد بررسی در آندوسپرم برنج

<table>
<thead>
<tr>
<th>میزان امپلوز (AC)</th>
<th>GT</th>
<th>GC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR229×IRRI2</td>
<td>IR229×IRRI2</td>
<td>IR229×IRRI2</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

جدول 3. میانگین نسل‌ها و برآورد برای آزمون معنی‌دار پوشن تفاوت بین والدین و نسل‌های مختلف B2, B1, F2, F1 با نسل‌های مقابل آنها در تلاقی‌های مختلف برای هر صفت مورد نظر

<table>
<thead>
<tr>
<th>صفت</th>
<th>GT</th>
<th>GC</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belarus 101</td>
<td>8</td>
<td>9</td>
<td>IR229×IRRI2</td>
</tr>
<tr>
<td>Belarus 101</td>
<td>7</td>
<td>8</td>
<td>IR229×IRRI2</td>
</tr>
<tr>
<td>Belarus 101</td>
<td>6</td>
<td>7</td>
<td>IR229×IRRI2</td>
</tr>
<tr>
<td>Belarus 101</td>
<td>5</td>
<td>6</td>
<td>IR229×IRRI2</td>
</tr>
</tbody>
</table>

** به ترتیب معنی‌دار در سطح احتمال پیک درصد و غیر معنی‌دار

* عدم اختلاف معنی‌دار

IRRI = میزان امپلوز
AC = درجه حرارت زلاته شدن
GA = غلظت زل

جدول ۲ آزمون اثر سیتوپلاسمی و آثار مستقل آن با زندهی‌های هسته‌ای

<table>
<thead>
<tr>
<th>صفت</th>
<th>تلاشی</th>
<th>[c]</th>
<th>χ²</th>
</tr>
</thead>
</table>
| GT | ستگ طارم‌گرده | - | 6.38
| GC | IRRI۲×IR۲۲۹ | ستگ طارم‌گرده | 7.33
| AC | IRRI۲×IR۲۲۹ | ستگ طارم‌گرده | 9.22

میزان دار در سطح احتمال یک درصد n=8

درجه حرارت زلاته‌نشان شدن و غلظت زل دارای آل‌های کاهنده و غلاب است و وارد IRRI۲×IR۲۲۹ در صفت غلظت زل دارای آل‌های کاهنده و غلاب، ولی در صفت میزان آمپلوز دارای آل‌های افرازینه با اثر غلیط بود.

اثر از صفات غلظت زل و میزان آمپلوز در صفت IRRI۲×IR۲۲۹ به مورد بررسی نشان می‌دهد که مطلوبیت دمای گزارش‌های شی و همکاران (۲۹)، و چان و همکاران (۱۴) می‌باشد. تفاوت مقدار در بین صفات و تلاش‌ها نشان‌دهنده میزان تجمع زنده در [d] لایه‌های ولیدینی می‌باشد. از طرفی مقدار [h] در بیشتر موارد [h] از زیرگزین بود که حاکی از این موضوع است که یک آل‌بل غلاب، اغلب نمی‌توانند جریان از این الگو را برای یک پیان کامل داشته باشند (۱۴) و حتی بیشتر در صفت داره حرارت زلاته‌نشان شدن و غلظت زل دهده می‌باشد در صفت آمپلوز در بک‌کرکتر از [h] و [h] تفاوت جزئی بین (IRRI۲×IR۲۲۹) و جوید (IRRI۲×IR۲۲۹) دیگر است. در سطح یک مورد نمونه این نتایج که برای صفت آمپلوز، در تلاش‌های دارک‌شده یک آل‌بل غلاب می‌تواند کاهش داشته باشد (۲۹). پویان و همکاران (۲۶)، در بررسی صفت آمپلوز در ده تلاش بی این توجه رسمی‌نهایی در دستور مورد [h] کوچک‌تر از سه بیان دهده ازان است که بهتر غلاب می‌باشد. از بایان کامل صفت کافی می‌باشد. نتایج تجزیه مبتنی

برآورد پارامترهای زنده‌کننده تجزیه آثار زنده‌کننده داد که ال‌آزمایی‌های زنده‌کننده در صفت غلظت و تلاش‌های مورد بررسی می‌ماند و مقدار آن یک نسیب به نوع [d] مربوط رعایت همکاران (۲۹)، و چان و همکاران (۱۴) می‌باشد. تفاوت مقدار در بین صفات و تلاش‌ها نشان‌دهنده میزان تجمع زنده در [d] لایه‌های ولیدینی می‌باشد. از طرفی مقدار [h] در بیشتر موارد [h] از زیرگزین بود که حاکی از این موضوع است که یک آل‌بل غلاب، اغلب نمی‌توانند جریان از این الگو را برای یک پیان کامل داشته باشند (۱۴) و حتی بیشتر در صفت داره حرارت زلاته‌نشان شدن و غلظت زل دهده می‌باشد در صفت آمپلوز در بک‌کرکتر از [h] و [h] تفاوت جزئی بین (IRRI۲×IR۲۲۹) و جوید (IRRI۲×IR۲۲۹) دیگر است. در سطح یک مورد نمونه این نتایج که برای صفت آمپلوز، در تلاش‌های دارک‌شده یک آل‌بل غلاب می‌تواند کاهش داشته باشد (۲۹). پویان و همکاران (۲۶)، در بررسی صفت آمپلوز در ده تلاش بی این توجه رسمی‌نهایی در دستور مورد [h] کوچک‌تر از سه بیان دهده ازان است که بهتر غلاب می‌باشد. از بایان کامل صفت کافی می‌باشد. نتایج تجزیه مبتنی
جدول 5: پراورده‌های مربع کای دو با برای آزمون آثار متقابل غیر آلی در صفات غلظت زل دمای زلاته‌ی شدن و میزان آمیوز

<table>
<thead>
<tr>
<th>صفت</th>
<th>پراورش نکویی مدل</th>
<th>آزمون ایستایی</th>
<th>تلاقی</th>
<th>m</th>
<th>h</th>
<th>[i]</th>
<th>[j']</th>
<th>(\chi^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT</td>
<td>(\chi^{**})</td>
<td>3/76 **</td>
<td>2/86 \pm 0/36</td>
<td>2/46 \pm 0/49</td>
<td>2/36 \pm 0/54</td>
<td>2/22 \pm 0/57</td>
<td>2/16 \pm 0/59</td>
<td>2/12 \pm 0/62</td>
</tr>
<tr>
<td>GC</td>
<td>(\chi^{**})</td>
<td>88/50 **</td>
<td>2/50 \pm 0/24</td>
<td>2/37 \pm 0/21</td>
<td>2/24 \pm 0/27</td>
<td>2/19 \pm 0/30</td>
<td>2/14 \pm 0/33</td>
<td>2/10 \pm 0/37</td>
</tr>
<tr>
<td>IRRI2×IR229</td>
<td>(\chi^{**})</td>
<td>20/51 **</td>
<td>5/16 \pm 0/51</td>
<td>5/08 \pm 0/51</td>
<td>5/02 \pm 0/53</td>
<td>4/98 \pm 0/55</td>
<td>5/00 \pm 0/52</td>
<td>5/04 \pm 0/56</td>
</tr>
<tr>
<td>AC IRRI2×IR229</td>
<td>(\chi^{**})</td>
<td>10/45 **</td>
<td>5/38 \pm 0/54</td>
<td>5/32 \pm 0/43</td>
<td>5/27 \pm 0/44</td>
<td>5/23 \pm 0/45</td>
<td>5/20 \pm 0/46</td>
<td>5/17 \pm 0/47</td>
</tr>
</tbody>
</table>

**: معنی‌دار در سطح احتمال 0/05
n.s: عدم معنی‌دار

جدول 6: پراورده‌های باران‌های زئن‌تنی‌های زئن‌تنی‌های نسل‌های برای صفات دمای زلاته‌ی این، غلظت زل و میزان آمیوز (در حالات تریپلودی)

<table>
<thead>
<tr>
<th>صفت</th>
<th>دمای زلاته‌ی شدن</th>
<th>میزان آمیوز</th>
<th>پارامتر</th>
<th>IR229×IRRI2</th>
<th>IR229×IRRI2</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>2/45 \pm 0/27</td>
<td>2/42 \pm 0/24</td>
<td>2/44 \pm 0/21</td>
<td>2/43 \pm 0/20</td>
<td>2/42 \pm 0/21</td>
</tr>
<tr>
<td>d</td>
<td>2/45 \pm 0/27</td>
<td>2/42 \pm 0/24</td>
<td>2/44 \pm 0/21</td>
<td>2/43 \pm 0/20</td>
<td>2/42 \pm 0/21</td>
</tr>
<tr>
<td>h</td>
<td>2/45 \pm 0/27</td>
<td>2/42 \pm 0/24</td>
<td>2/44 \pm 0/21</td>
<td>2/43 \pm 0/20</td>
<td>2/42 \pm 0/21</td>
</tr>
<tr>
<td>i</td>
<td>2/45 \pm 0/27</td>
<td>2/42 \pm 0/24</td>
<td>2/44 \pm 0/21</td>
<td>2/43 \pm 0/20</td>
<td>2/42 \pm 0/21</td>
</tr>
<tr>
<td>[j]</td>
<td>2/45 \pm 0/27</td>
<td>2/42 \pm 0/24</td>
<td>2/44 \pm 0/21</td>
<td>2/43 \pm 0/20</td>
<td>2/42 \pm 0/21</td>
</tr>
<tr>
<td>[k]</td>
<td>2/45 \pm 0/27</td>
<td>2/42 \pm 0/24</td>
<td>2/44 \pm 0/21</td>
<td>2/43 \pm 0/20</td>
<td>2/42 \pm 0/21</td>
</tr>
<tr>
<td>[l]</td>
<td>2/45 \pm 0/27</td>
<td>2/42 \pm 0/24</td>
<td>2/44 \pm 0/21</td>
<td>2/43 \pm 0/20</td>
<td>2/42 \pm 0/21</td>
</tr>
<tr>
<td>[m]</td>
<td>2/45 \pm 0/27</td>
<td>2/42 \pm 0/24</td>
<td>2/44 \pm 0/21</td>
<td>2/43 \pm 0/20</td>
<td>2/42 \pm 0/21</td>
</tr>
<tr>
<td>(\chi)</td>
<td>2/45 \pm 0/27</td>
<td>2/42 \pm 0/24</td>
<td>2/44 \pm 0/21</td>
<td>2/43 \pm 0/20</td>
<td>2/42 \pm 0/21</td>
</tr>
</tbody>
</table>

\(\chi \) ها غير معنی‌دار (5/0\% 0/05) بود و لی نمای اجزای پراورده شده معنی‌دار (5/0\% 0/05) است.
مطالعه پارامترهای زنبیل‌کش صفات مربوط به آندوسیرم در تلاقی‌های برج

بررسی در این آزمایش با تنظیم پنج (25 و 26) شدت و همکاران (24 و چان وو و همکاران (4) متابقت دارد.

اجزای واریانس

نسبت واریانس‌ها در نسل‌های مختلف در جدول 7 نشان داده شده است. نسبت واریانس‌ها و ذهن آینده از معنی دار را در همه صفات در تلاقی‌های مورد بررسی به جز تلاقی برای صفت غلظت زل نشان داد که عدم اختلاف معنی‌داری از اثر معیتی پیش‌آمده و به دلیل اختلال ناگزین بین دو و الیزه در لحظه صفاری مورد نظر، واریانس نسل‌های متقابل به صورت یکپارچه و همگن برای تجزیه به‌دست می‌شود و ارث تجعلهای این واریانس‌ها نیز در جدول 8 نشان داده شد است.

از طریق آزمون بارلت و لون (11 و 19) هم‌گونی بودن سه واریانس‌ی F1, P1, P2 و بررسی شد که بر اساس آن در تلاقی‌های طارم از گردنه برای صفت دمای زلالنی‌های شند و در تلاقی‌های گردنه صفت غلظت زل، سه واریانس‌ها تفاوت معنی‌داری با هم نداشتند ولی در دو تلاقی سنج طارم از گردنه و در صفت میزان آمپوز و در تلاقی‌های طارم از گردنه برای صفت غلظت زل اختلاف معنی‌داری بین سه دیده شد.

در تجربه آماری اجرای واریانس، برای می‌نمای صفات و تلاقی‌ها واریانس‌ها کاملاً معنی‌داری دارند و از جزئی F نوع از واریانس افراشی کاملاً معنی‌دار دارد و برای حل بیان شد، در تیپ به (h2, h1) و حاصل صرب این افراشی (di) و اثر غلظت (Gl) (di) و استاد آمیز، معنی‌دار بودن آنها طوری که مخصوصی نشان‌دهنده حضور اثر غلظت بود.

مقدار F و F2 در دو تلاقی دمای زلالنی‌های شند و غلظت زل منفی بوده که می‌تواند میان مکمل به‌کمکی که آلم‌ها و ال. که گویایی از برتری بالای نسبت به آل‌ها و ال. و پرناهای F1 برخورد (42) در صفت میزان آمپوز در هر دو تلاقی F و F2 و می‌تواند باشد که ناشی از اهمیت بالای آل‌ها و ال. و نظر را انتخاب نمود (34). نتایج به دست آمده از صفات مورد
جدول 7 نسبت واریانس ها در والدین B_1, B_2, F_1, F_2 در تلاقی های مختلف برای سخت

<table>
<thead>
<tr>
<th>صفت</th>
<th>تلاقی</th>
<th>P_1</th>
<th>P_2</th>
<th>F_1</th>
<th>F_2</th>
<th>B_1</th>
<th>B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT</td>
<td>سنت طاولخا</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
</tr>
<tr>
<td>GC</td>
<td>سنت طاولخا</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
</tr>
<tr>
<td>AC</td>
<td>سنت طاولخا</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
<td>0.0625</td>
</tr>
</tbody>
</table>

جدول 8 واریانس های درون گروهی در تلاقی های مختلف

<table>
<thead>
<tr>
<th>صفت</th>
<th>تلاقی</th>
<th>درون گروهی</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT</td>
<td>سنت طاولخا</td>
<td>0.0625</td>
</tr>
<tr>
<td>GC</td>
<td>سنت طاولخا</td>
<td>0.0625</td>
</tr>
<tr>
<td>AC</td>
<td>سنت طاولخا</td>
<td>0.0625</td>
</tr>
</tbody>
</table>

مزیان املوز، غلظت ذل و دارچین حرارت زلاتنی شدن گزارش کرده. لازم به ذکر است که برآورد واریانس ذیل در تلاقی برای زنوتیپ های مورد مطالعه در این پژوهش و در سایر تلاش‌ها حاضر صادق است.

بر اساس نسبت به آلسری والد کمک‌کننده در تغییرات زنی می‌باشد. در اکثر تلاقی‌ها و صفتهای سردی همان طوری که انتظار می‌رفت در نوارهای صفتهای کمی نشان داد. همچنین نمایندگی بوده در جزییات قابل توجهی می‌باشد که از Ew محاسبه شده است.

جدول 9 میزان تعداد گروه‌های زنی کنترل کننده ساخت

ورانت پذیری ورانت پذیری عمومی و خصوصی در جدول 16 ارور شده است که ورانت پذیری عمومی و 87 چک تا 99 متغیر بود. ورانت نسبت سهم گردید که در ورانت پذیری صفتهای داشت. در از طرفی ورانت پذیری عمومی با سه‌گانه $1/4$ سهم اثرات افزایش یافته را در ورانت پذیری صفتهای مورد مطالعه نشان می‌دهد. مانند و روتوندرا (32) ورانت پذیری بالایی را برای

14

5
جدول 9. برآورد اجزای واریانس نسل ها و ارزش \(\chi^2 \) برای آزمون کلاکت مدل

<table>
<thead>
<tr>
<th>صفت</th>
<th>تلایی</th>
<th>(D)</th>
<th>(F')</th>
<th>(F'')</th>
<th>(E_1)</th>
<th>(E_2)</th>
<th>(E_3)</th>
<th>(\chi^2) (df)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>±/44</td>
<td>±/3/24</td>
<td>±/3/23</td>
<td>±/3/8</td>
<td>asE1</td>
<td>asE1</td>
<td>1/47 (2)</td>
</tr>
<tr>
<td>GC</td>
<td></td>
<td>58/98</td>
<td>±/-7/9</td>
<td>±/-5/9</td>
<td>±/-5/9</td>
<td>_</td>
<td>asE1</td>
<td>3/93 (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±/-2/24</td>
<td>±/-5/89</td>
<td>±/-5/9</td>
<td>±/-5/9</td>
<td>asE1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>±/-2/14</td>
<td>±/-5/14</td>
<td>±/-5/9</td>
<td>±/-5/9</td>
<td>asE1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>22/56</td>
<td>±/-1/87</td>
<td>±/-1/25</td>
<td>±/-1/25</td>
<td>±/-1/25</td>
<td>±/-1/25</td>
<td>0/35 (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±/-1/87</td>
<td>±/-1/25</td>
<td>±/-1/25</td>
<td>±/-1/25</td>
<td>±/-1/25</td>
<td>±/-1/25</td>
<td>0/35 (1)</td>
</tr>
</tbody>
</table>

واریانس افزایشی \(D \) و \(F' \) و \(F'' \) = فاصله کاریانس افزایشی \(\times \) غالابیت

\[F_{1} = \text{واریانس نسل 1} \times \text{واریانس والد دوم} \]

\[F_{2} = \text{واریانس والد راه} \times \text{واریانس والد دوم} \]

جدول 10. برآورد وراثت پذیری عمومی و خصوصی برای صفات مورد مطالعه در تلایی های برنج

<table>
<thead>
<tr>
<th>صفت</th>
<th>تلایی</th>
<th>(عمومی) (h2)</th>
<th>(خصوصی) (h2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT</td>
<td></td>
<td>0/77</td>
<td>_</td>
</tr>
<tr>
<td>GC</td>
<td></td>
<td>_</td>
<td>0/95</td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>

\[h = \frac{p_{1} + p_{2} + F_{1}}{3} \]

\[E_{w} = \frac{E_{12} + E_{13} + E_{3} + E_{2}}{5} \]

جدول 11. برآورد تعداد زندهی کنترل کردن پیش جهت فناوری پرورش غلظت زل، درجه حرارت زلاته شدن و میزان آمیوز

<table>
<thead>
<tr>
<th>صفت</th>
<th>تلایی</th>
<th>(n_{1})</th>
<th>(n_{2})</th>
<th>(n_{3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT</td>
<td></td>
<td>0/94</td>
<td>1/50</td>
<td>5/12</td>
</tr>
<tr>
<td>GC</td>
<td></td>
<td>0/76</td>
<td>0/76</td>
<td>1/18</td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td>0/84</td>
<td>0/84</td>
<td>0/85</td>
</tr>
</tbody>
</table>

515
مدل زیتینکی برارش داده شده برای صفات مورد بررسی، می‌توان برنامه‌ها و اهداف اصلی آنها را مشخص کرد. در مجموع، کنترل زیتینکی صفات میزان آمیلوز و غلظت زل پیچیده ولی صفات حشرات زیاتانی شدن دراز و رواست‌بندی ساده‌ای بود. همچنین در نحوه نویز صفات میزان آمیلوز و غلظت زل نه تنها آثار ایستایی نقض مهم و موثری را ایفا کردند، بلکه اثر سیتولاسی و اثر متقابل سیتولاسی‌های هسته‌ای نیز بسیار تأثیر گذاشت. براید و رواست‌بندی‌خصوصی، تعادل فاکتورهای مؤثر و تخمین واریانس افرادی همگی بر مبانی فرضی نیبودن ایستایی و لینکاز ماساژی مشابه می‌گردند که در این جمع‌بندی‌ها فرض نبودن ایستایی کاملاً نه شود (۱۱ و ۳۳). بدین ترتیب کوچک‌بودن واریانس متقابل خصوصی و تعادل فاکتورهای مؤثر می‌تواند به واسطه برآورد مقدار واریانس کوچک‌بودن ایستایی اشتباه نمونه‌برداری و اثرات محیطی برای صفات مورد نظر باشد (۵). کوپر و سیگنگ (۱۷).

برآورد، بردارهای بسیار کوچک از فاکتورهای مؤثر به دلیل حضور اثرات ایستایی کارگر نمودند. به‌دلیل ترتیب در برنامه‌ای اصلی می‌توان صفات میزان آمیلوز، غلظت زل و درجه حشرات زیاتانی شدن را همانند صفات مورد ارزیابی قرار داد و با توجه به نقش اثر سیتولاسی در نظم انتحاب وادی، به نتایج قابل توجهی در اصلاح کیفیت برنج دست‌یافت.

نتایج گیری

در پژوهش حاضر مدل زیتینکی و تجربه آماری پوپی (۲۵). استفاده شد، تا آثار زنی و اجرای واریانس برای صفات همی‌اندوزه در هد نشی برای درک تک‌تایی برآورد کند. این مدل در مقایسه با مدل‌های متوالی برای بافت تریپلیئد، علاوه بر برآورد کلیه آثار ایستایی سیتولاسی و مقاپل سیتولاسی‌های این برآورد و اختلاف بین هد نشی و نسل مقابل آن را بیان می‌کند. در این آزمایش، با ارائه مناسب‌ترین

منابع مورد استفاده

18. Lande, R. 1981. The minimum number of gene contributing to quantitative variation between and within populations. Genetic 90:541-553