انتخاب روش مناسب اندازه‌گیری میزان بهره‌برداری در درمنهزار

عباسعلی وظیفه و مهدی یکشیری

چکیده
سطح وسیعی از منابع ایران در این پژوهش درمنهزار است که مورد بهره‌برداری نیز قرار می‌گیرد. تخمین میزان بهره‌برداری از پوشش درمنهزار در مدیریت صحیح بهره‌برداری ضروری است. انتخاب روش مناسب که دقیقت قابلیت و سرعت لازم را داشته باشد، مورد نیاز مرمتداران است. روش‌های تمیزین درد بهره‌برداری و نانوئی برای گیاهان چهل و بیست و شش موردی انتخاب شده و مورد بررسی و توزیع، واحد مرجع، تخمین جسمی، طول سرشاخه، قطر سرشاخه، و شاخه‌های تولید، این روش‌ها در مترنگ شکلی چاه‌جزئی، در فاصله 250 کیلومتر چند برآب اصفهان تولید شد. در بین این روش‌ها، در صورت قطع و توزیع دقیق‌ترین روش است، ولی به دلیل زمان‌بندی بودن، مشکل است. در این تحقیق به کمک آزمون آماری تی تست میانگین روش‌های دَرک شده، با روش قطع، توزیع مقایسه گردید. ترتیب نشان داد که میانگین‌های روش‌های واحد مرجع، طول سرشاخه و قطر سرشاخه با میانگین روش قطع، توزیع اختلاف معنی‌داری تفاوت ندارند. پس از مقایسه سرعت آنها، روش واحد مرجع به خاطر سرعت زیادتر، انتخاب و برای درمنهزار معنی‌داری معرفی گردید.

واژه‌های کلیدی: درصد بهره‌برداری، درمنهزار، روش قطع و توزیع، روش قطع‌های زوجی، روش واحد مرجع، روش تخمین جسمی، روش جداگانه کلیدی: درصد بهره‌برداری، درمنهزار، روش قطع و توزیع

مقدمه
در ایران تنوع کلی، عوارض طبیعی، زمین و خاک باعث ایجاد شهرهای بی‌خودی، فردوس، سرخس، نیشابور، سیبزوار، شاهین‌دوست، دامغان و ستاران به شماره و نشان دهنده، این تоперال و ادامه می‌IAN. در قسمت غرب مناطق پایانی، این تیپ به سمت شهرهای ساوه، قم، کاشان، اردستان و اصفهان ادامه دارد. در قسمت جنوب شرقی به طرف جنوب غربی، قسمت ۴ از شهرهای سراوان، درمنهزار در قسمت شمالی مناطق پایانی از تیره به غرب، درمنهزار در قسمت شمالی مناطق پایانی، از تیره به غرب، درمنهزار در قسمت شمالی مناطق پایانی، از تیره به غرب، درمنهزار در قسمت شمالی مناطق پایانی. در استان مرکزی، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان

3. Artemisia herba-alba

1. مربی مرتع داری، از مالک‌رستگان کشاورزی در ایران، دانشگاه شیراز
2. استادیار مرتع داری، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان

125
در طول چراگیاهان روش تخمین میتوسط پیچپسپ و پیچدورد (۲۳) ابتدایی است. برای اینکه در نهایت هزینه و ابتداهای بین برآوردها و مقدار واقعی به‌همپردازی، برای اصلح و تعداد تخمین‌ها پیچه‌پسپ گردید (۱۱۳ و ۱۲۳). واحد نمونه‌گیری در روش تخمین میتوسط نمونه‌گیری باشد. کلکر (۱۷) بایان کرد زمانی که واحد نمونه‌گیری پلاستیک باشد روش تخمین‌های برای عرضه‌های طبیعی به اندازه کافی سریع و دقیق است.

روش دیگر محاسبه درصد به‌همپردازی، روش واحده مرجع است. این روش توسط کسی (۱۵) ابتدایی شد. واحد نمونه‌گیری در این روش یک قسمت از یکی هست. تفاوت سالنگر برای یک پلاستیک و نیاز به پلاستیک در واحده مرجع است. در روش در جابه‌جایی کار می‌رود که در طول دوره چراگیاهان روش تهیه شده باشد. با حالت استراحت باشد. در غیر این صورت باشیم دو چرا بیش از چند روز طول نگذرد. اگر دوره چرا طولانی باشد، با پیش‌اندازه‌گیری میزان به‌همپردازی مردید چرا یکی از چراگیاهان زیادی دارد، که تنظیم کرده‌اند و بایستی در این روزهای داده که تنظیم کرده‌اند و افزایش آثار چرا بر پوشش گیاهی از جمله آن‌ها (۱۰).

روش‌های معمول برای تعیین درصد به‌همپردازی وجود دارد. از روش‌های مداوم برای گیاهان چوبی و باریک می‌توان فقط قطع و توزین، تخمین چشمی، واحد مرجع، طول سرخاش، قطر سرخاش و شاخی توزین (۱۵) را نام‌برد (۵۷) و (۴۸).

روش قطع و توزین از مداوم‌ترین و دقیق‌ترین روش‌های برآوردهای به‌همپردازی است. این روش در دو حالت انجام می‌شود. حالت اول زمانی است که در طول دوره چراگیاهان رویش داشته باشند. با استفاده از روش کلی‌گیری و همکاران (۱۰)، پلاستیک زوجی در مرتع مستقر می‌شود. آزمیز یا پلاستیک باز می‌گردد. حالات گروهی به کارگیری و روش کسی (۱۵) به صورت قبل و بعد از چرا (۱۷) است. این حالت زمانی می‌فتد وقتی می‌شود که

1. Clipping and weighing method
2. Ocular estimate
3. Reference unit method
4. Twig length method
5. Branch diameter
6. Production index method
7. Paired plot
8. Before and after grazing
انتخاب روش مناسب اندانزه‌گری میزان پهپادبردی در درمنزار

با سیل و هوت پیچنگ (12) از دو متغیر قطر و طول پرای پیشگویی وزن استفاده کردند. در مود میزان داده می‌باشد. لذا با پیشینه در هر عرضه یا هر روش خاصی به دست آمده در منطقه می‌باشد.

نگونه آندانزه‌گری وزن صورت نمی‌گیرد (13 و 18).

برای (14) یک روش به‌نام شناختی تولید برای تعیین میزان پهپادبردی گیاهان خشکاب ابزار کرد. در این روش هنگام گونه آندانزه‌گری وزنی صورت نمی‌گیرد (13 و 18).

هدف از این تحقیق اجرای روش‌های تعیین پهپادبردی در درمنزرا و مقایسه دقت، سرعت و سهولت آنهاست. برای تعیین دقت روش‌ها، تاکنون هر روش به‌طور جداگانه با روش قطع و توزین، که دقیق‌ترین روش می‌باشد، مقایسه می‌گردید.

مواد و روش‌ها

مقایسه و ارائه طبیعی محل اجرا تحقیق محل اجرا تحقیق در منطقه‌ای جنوب و فارس واقع است. این منطقه به مرتع جوهریه عصر به در نظر گرفته شد. نمونه‌گیری از جامعه‌ای پوشته در مناطق کلید صورت گرفت. روش‌های تعیین درصد پهپادبردی بر حسب واحد نمونه‌گیری به دو روش تقسیم شده‌اند:

1. فلزهای مولوتور مطالعه را در محدوده استان و شهرستان اصفهان نشان می‌دهد. مرتع جادویر بین عرض‌های 52 درجه و 36 دقیقه شرقی و بین عرض‌های 47 دقیقه شرقی و بین عرض‌های 31 درجه و 56 دقیقه شرقی قرار داشته است.

2. اقلیم منطقه بر اساس تقسیم‌بندی اقیانی ایران توس‌های پاز اس (42) است. مرداد می‌باشد. مقدار توزیع نسبی آن‌ها 125 میلی‌متر و درجه حرارت مناسب سالانه آن 21 درجه سانتی‌گراد می‌باشد (اطلاعات اقلیمی به دنیل نوبن ایستگاه منطقه‌ای ایستگاه‌های مجاور منطقه، ساماندهی ایستگاه‌های وزنه و شرکا با فاصله تقریبی 75 کیلومتر از مرتع و ارتفاع تقریبی 1700 متر از سطح تراز دریا استفاده شده است).

1. Artemisia sieberi
2. Zygodoplyum eurypterum
3. Astragalus spp.
4. Scoriola orientalis
5. Atrophaxis spinosa
شکل 1. موقعیت محل اجرای تحقیق در محدوده استان و شهرستان اصفهان

گردید. سپس با توجه به میزان تولید هر پلیت، پلاتی مناسب و مشابه آن در قسمت دیگر مشخص شده بعد از دوره 35 روزه، علوفه 50 زوج پلیت به طور جدایگانه قطع و وزن خشک آنها به دست آمد. تفاوت علوفه پلات چرا شده و چرا نشده معرف میزان علوفه برداشت شده است که با تقسیم کردن این مقدار به علوفه پلات چرا نشده، درصد بهبورداری محاسبه شد. به این ترتیب باید 50 پلاک زوجی 50 درصد بهبورداری محاسبه، و پس از مدلگیری درصد بهبورداری و واریانس آن محاسبه گردید.

روش تخمین چشمی

در این روش ابتدا بايد توانایی فرد تخمینزیان بالا رود، تا بتواند

لازم 50 عدد به دست آمد (شکل 2). هم چنين برای تعیین تعداد نمونه لازم برای روش‌هایی که واحد نمونه‌گیری آنها سرشاخه درنده‌ی بود، ابتدا 110 ترکه به صورت تصادفی انتخاب و وزن خشک آنها اندازه‌گیری شد. سپس بر اساس روش تریسمی، تعداد سرشاخه لازم 100 عدد انتخاب گردید (شکل 3).

روش قطع و توزین

ابتدا در منطقه کلید دو قسمت مشابه که پوشش یک‌نواخت داشتند انتخاب شد و تصمیم گرفته شد به طور تصادفی یک قسمت چرا شده و یک قسمت چرا نشده بیل از شروع فصل چرا، در کیفیت از قسمت‌ها به روش تصادفی سیستماتیک پلات چهار متر مربعی به وسیله سیحه‌ای چوبی مشخص
انتخاب روش مناسب اندازه‌گیری میزان پهپادی در درمنزار

شکل ۲. تعیین تعداد نمونه لازم به روش ترسیمی برای روش هایی که واحد نموداری آنها پلاک است

شکل ۳. تعیین تعداد نمونه لازم به روش ترسیمی برای روش هایی که واحد نموداری آنها سرشاخه یا ترکه است

مقدار علوفه برداشت شده یا درصد پهپادی را برآورد کننده، پس از انجام این کار به کمک ۱۵ پلاک معادل رگرسیونی مناسب انتخاب شده که مدل خطی $Y = A + BX$ ی بهترین همپسکی را نشان داد. در این معادله X متغیر مستقل و میزان تخمین و Y متغیر واپسند و میزان درصد پهپادی الفاقع
روش شاخه تویید به منظور نمونه‌گیری در پایان دوره چرا، ۵۰ پلاط چهار
متری‌بری به صورت تصادفی سیستماتیک منفی‌گردید. برای
هر پوشه در هر پلات سطح تاج پوشش و معدل ترک‌های چرا
شده و چرا نشده اندازه‌گیری شد. که از ضریب کردن سطح
تاج پوشش در هر پلاک، طول ترک‌های چرا شده شاخص تویید
برای هر پوشه در هر پلاک به دست آمد. سپس با استفاده از تفاضل
طول رکه‌های چرا شده و چرا نشده و تقسیم آن بر متوسط
ترک‌های چرا شده، میزان علوفه برداشت شده از هر پوشه برآورد
و در شاخص تویید ضرب گردید تا شاخص به‌هبداری هر پوشه در
دست آمد. آن‌گاه مجموع شاخص‌های تویید و
شاخص‌های به‌هبداری درمدها در هر پلاک محاسبه شده که از
تقسیم مجموع شاخص‌های به‌هبداری به مجموع شاخص‌های
تویید در هر پلاک، درصد به‌هبداری به دست آمد. سپس
میانگین و واریانس بین پلات‌ها محاسبه گردید.

روش واحد مرجع
برای انتخاب این روش، قبل از شروع چرا ۱۰۰ زوج ترک در دو
قسمت چرا شده و چرا نشده مشابه یکدیگر انتخاب گردید. پس
از پایان دوره چرا ۱۰۰ زوج ترک به صورت جدایگان قطع شده و
وزن خشک آنها به دست آمد. تفاصل وزن ترک‌های چرا شده و
ترک‌های چرا شده، وزن علوفه برداشت شده را تشابه می‌دهد. از
تقسیم این مقدار علوفه به وزن ترک‌های چرا، نشان داده
به‌هبداری بایر هر ترک به دست آمد، سپس میانگین و
واریانس بین درصد به‌هبداری ۱۰۰ ترک محاسبه گردید.

روش طول شاخه
در این روش با استفاده از طول و وزن ترک‌های اندازه‌گیری
گردید. ابتدا ۱۲۰ ترک به صورت تصادفی انتخاب، و پس از
خشک نشدن و طول و وزن نیروکه اندازه‌گیری شد. سپس در
۵۰ و ۲۵ درصد طول آنها از انتهای ترک مقطع دیده شد و وزن
۵۰ و ۷۵ و ۲۵ درصد طول ترک‌ها محاسبه گردید. بنا بر این، برای

۱۲۰
انتخاب روش مناسب اندازه‌گیری میزان بیهوبرداری در درمان زده

محاسبه شده. مقدار R یک همبستگی 33 درصدی بین قطع و وزن سرشاره را بیان می‌کند. مقدار R^2 نشان می‌دهد که 46 درصد تغییرات وزن را عامل قطع توجیه می‌کند. شکل 6 رابطه بین وزن و قطع سرشاره را نشان می‌دهد.

از مقایسه میانگین روشهای واحد مرجع، تخمین چشمی، قطع سرشاره، طول سرشاره و شاخص تولید، با میانگین روشهای دفع قطع و توزیع، با استفاده از آزمون تی تست نتایج زیر به دست آمد:

بین میانگین روشهای واحد مرجع، قطع سرشاره و طول سرشاره با روش قطع و توزیع 99 درصد اطمینان احتمال معنی‌داری وجود دارد. بین میانگین روشهای تخمین چشمی و شاخص تولید با روش قطع و توزیع 99 درصد اطمینان احتمال معنی‌داری وجود دارد. با استفاده از آزمون آزمایش تایپی، نتایج به دست آمد از روشهای واحد مرجع، طول سرشاره و قطع و توزیع یکسان است و روشهای تخمین چشمی و شاخص تولید دقیق لازم ندارند.

زمان‌های متوسط دفع سرشاره در ارجاء این روشهای از بیشترین تکثیر به ترتیب زیر است: قطع و توزیع، طول سرشاره، قطع سرشاره، شاخص تولید، واحد مرجع و تخمین چشمی.

از مقایسه هم زمان متوسط حاصل از مقایسه میانگین‌ها و مقایسه زمان‌ها، می‌توان پی برد که روشهای واحد مرجع به علت دقت و سرعت زیاد، می‌تواند به عنوان مناسبترین روشهای درمانی انتخاب شود. روشهای طول سرشاره و قطع سرشاره نیز دقیق بالایی داشتند و لیکن نسبت به روشهای واحد مرجع زمان‌بندی مسقت نبودند. روشهای تخمین چشمی و شاخص تولید قطع بالایی نداشته و لیکن سرعت خوبی دارند. در جدول 1 مقایسه زمان‌های متوسط دفع سرشاره روش‌ها نشان داده شده است.

بحث

از مقایسه دقت روشهای مشخص گردید که میانگین روشهای واحد مرجع، طول سرشاره و قطع سرشاره با میانگین روشهای تخمین چشمی و شاخص تولید بهترین روشهای دفع سرشاره بودند. در مقایسه دقت روشهای طول سرشاره و قطع سرشاره R^2 $Y = 0.5$ باید 0.23 باشد که 95 درصد تغییرات وزن را عامل قطع سرشاره توجیه می‌کند. شکل 5 رابطه بین وزن و طول سرشاره را نشان می‌دهد.

در روشهای دفع سرشاره، بین وزن و قطع سرشاره رابطه R^2 $Y = 0.5$ باید 0.23 باشد که 95 درصد تغییرات وزن را عامل قطع سرشاره توجیه می‌کند. شکل 5 رابطه بین وزن و طول سرشاره را نشان می‌دهید.

نتایج

بین روشهای تخمین چشمی، طول سرشاره و قطع سرشاره، معادلات به دست آمده به شرح زیر است. در روشهای تخمین چشمی رابطه $X + Y + 0.21$ به دست آمد و $R = 0.24$ با Y و $R^2 = 0.57$ بین مقدار تخمین چشمی و مقدار وانه لیق درصد بهبود برای به دست آمده. بین دو متغیر با یکدیگر و مستقل 49 درصد همبستگی وجود دارد. شکل 4 رابطه بین مقادیر واقعی و تخمین‌ها را نشان دهد.

در روشهای دفع سرشاره، بین وزن و طول سرشاره رابطه $R^2 = 0.41$ به دست آمده. Y با X با اسکایت 95 درصد تغییرات وزن را عامل طول سرشاره توجیه می‌کند. شکل 5 رابطه بین وزن و طول سرشاره را نشان می‌دهد.

I. T-test

131
شکل ۴. رابطه خطی و همبستگی بین پراورد پوربرداری و مقادیر واقعی در پلات‌های چهار مترمربعی

شکل ۵. رابطه و همبستگی بین طول و وزن سرشاخه برای انجام روش طول سرشاخه

y = 0.6826x + 10.059
R² = 0.7101

y = 0.000928x^{1.22}
R² = 0.9076
انتخاب روش مناسب اندازه‌گیری میزان بهره‌برداری در دمترزار

جدول 1. مقایسه‌ی میانگین زمان صرف‌شده روش‌های مختلف با روش قطع و توزین

<table>
<thead>
<tr>
<th>روش‌ها</th>
<th>درصد بهره‌برداری</th>
<th>محاسبه‌شده</th>
<th>نتیجه</th>
<th>درصد بی‌بهان</th>
<th>دیجیت (دقیقه)</th>
</tr>
</thead>
<tbody>
<tr>
<td>قطع و توزین</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>567</td>
</tr>
<tr>
<td>واحد مرجع</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/1</td>
</tr>
<tr>
<td>تخمین چشمش</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>184</td>
</tr>
<tr>
<td>قطر سرشاخه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0/2</td>
</tr>
<tr>
<td>طول سرشاخه</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>شاخص تولید</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>288</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>297</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>230</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
</tr>
</tbody>
</table>

شکل 4. رابطه خطی بین دست آمده بین وزن و قطر سرشاخه برای روش قطع سرشاخه

قطع و توزین اختلاف معنی‌داری ندارد و لی دو روش شاخص تولید و تخمین چشمش دارای اختلاف معنی‌دار می‌باشند.

مقایسه زمان‌های صرف‌شده نشان می‌دهد که روش واحد مرجع سریع‌تر از بقیه است.

در روش قطع و توزین اگر پلات های زوجی به صورت تصادفی انتخاب شوند برآورد دقیقی از بهره‌برداری به دست
مولف و نویسنده شاخص، منابع طبیعی/جلد چهارم/بهصورت سوم/پاییز ۱۳۷۹

روش طول سرشاخه یا ترکه یک روش اندازه‌گیری غیرمستقیم به‌پرهبرداری است که بر اساس تغییرات طول سرشاخه در اثر چرایی و راه اندازی خشیب کاربردی دارد. دقیقاً این روش بستگی به راه اندازی دارد که بین طول و وزن ترکه به دست می‌آید. اگر راه اندازه‌سازی باید تغییر کند، طول و وزن باید باشد. اگر طول کافی راه اندازه‌سازی قوزبین طول و وزن باید باشد. اگر طول کافی باشد، وزن طول طول کافی باید باشد. اگر طول کافی باشد، وزن طول کافی باید باشد. اگر طول کافی باشد، وزن طول کافی باید باشد. اگر طول کافی باشد، وزن طول کافی باید باشد. اگر طول کافی باشد، وزن طول کافی باید باشد.
انتخاب روش مناسب اندازه‌گیری میزان بهره‌برداری در درمنهزار

پوهربداری عرضه‌های مختلف و زمان‌های مختلف کارایی می‌باشد. هم چنین، روش‌های شاخص تویل و تخمین چشمی در درمنهزارها می‌توانند برای پرورش پراکش‌های دام در سطح مربع مورد استفاده قرار داد.

سیاستگذاری

بدین وسیله از زحمات سرکار خانم صداک که زحمت ناپایین مقاله را یک دست نشانده، همچنین از زحمات آقای عبادالله، عرب مختاری که در این مقاله به معرفی ما همکاری کردن نهایت تشکر و سپاسگزاری را داریم. از خداوند منعکس توییک‌های روژانزون ایشان را خوستاریم.

رش و تخمین چشمی سرعت بالایی داشته و دقت ان به توانایی تخمین زدن فرد یکی دارد. پاول و پونهام (12) اینکه البالا یا پایین دقت این روش استفاده از یک ماده‌گری قبلاً چاپ گرده و مقدار واقعی را یا روش اصول میزان تخمین‌ها نشانه‌های نمودند.

توییک روش تخمین چشمی در درمنهزار، به عمل سریع بودن و سهولت اجرا در زمان‌هایی اطلاعات زیادی برای تجزیه و تحلیل‌های آماری فراهم می‌کند، بنابراین می‌تواند روش مورد استفاده باشد.

منابع مورد استفاده:

1. ارژانتی شمس آبادی، ج. 1367. جزوی درسی تجزیه و تحلیل روستایی‌های اندام‌های جاری مرتع. دانشگاه تربیت مدرس.
2. ارژانتی شمس آبادی، ج. 1368. بررسی رویکرد پوشش‌های انجام شاخ و برگ و پایه‌گاهان با توییک مرتع. پایان نامه کارشناسی ارشد مرتونداری، دانشگاه تربیت و علوم جوامع، 1368. استفاده از گیاهان در انجام مواد خشک و نیمه خشک فلات مرکزی ایران. نشر شماره 64، انتشارات دفتر فنی مرتع، سازمان جنگل‌ها و مرتع کشور.
3. پاول، پ. 1388. توانایی میزان ارزان از طریق مطالعات زینتیکی و اکولوژیکی (ترجمه شیداپا). کلیدهای نهایی قانون. شیبایی، گ. د. تعمیم. 1387. مرتع‌داری نوین و تولید علفه در ایران. انتشارات وزارت کشاورزی و علوم روستایی، صفحه 92.
4. کرمی، م. 1377. اساسی گیاهان ایران. مرکز نشر دانشگاهی تهران، صفحه 416.
5. کرمی، م. 1376. زمینه‌شناسی مرتع. دانشگاه تربیت و علوم جوامع، صفحه 74.
6. مصافی، م. 1373. مرتع‌داری در ایران. آستان قدس، بنیاد فرهنگی رضوی، صفحه 61.
7. مظفریان، و. 1376. فرهنگ نامه‌ای گیاهان ایران. انتشارات فرهنگی معاصر ایران، صفحه 71.
8. جابری، م. 1371. بسته پیش‌بینی پیش‌بینی. دانشگاه تربیت و علوم جوامع، صفحه 780.
9. جابری، م. 1371. دانشگاه تربیت و علوم جوامع، صفحه 780.
10. جابری، م. 1371. دانشگاه تربیت و علوم جوامع، صفحه 780.

