شیرو: خشک‌کردن خورشیدی، آفت‌این و هوای خشک

علی اکبری، محمد شاهدی ۱، حسن همدی ۲، شهرام دخانی ۳ و مرتضی صادقی ۴

(تاریخ دریافت: ۱۳۸۶/۱۱/۱۲، تاریخ پذیرش: ۱۳۸۸/۲/۲)

چکیده
توابع و ورتهای گوگردگ، خشک شده یکی از راه‌های کاهش ضایعات زیاد گوگردگ، تازه و رنگ محسوب می‌شود. کیفیت محصول خشک شده به توجه به امکان‌پذیری گوگردگ، کیفیت این محصول اندازه‌گیری می‌شود. در این تحقیق، با ساخت یک دستگاه خشک کن خورشیدی و روهی قطعه‌گیری از آن، خشک‌کردن گوگردگ در محیط ۵۰ و ۷۰ درجه سانتی‌گراد (دردست پیشتر از درجه ۷۰ درجه سانتی‌گراد) کشف شد. با خشک کردن روهی و رهتمانی‌های قطعه‌گیری از روهی و روهی خشک‌کردن سنتی آفت‌این نیز تجویز گردید که سرتی خشک‌کردن در خشک کن خورشیدی بین ۱۷:۳۹ و ۲۵:۳۹ درصد پیشتر از روی شیمی‌اتجاه است. بررسی تغییرات درصد یک‌پارچه‌ای نیز گوگردگ غلیظ خشک‌کردن در دمای‌های مختلف وزن نشان داد که ضایعات راه‌های خشک‌کردن روی گوگردگی محصول غلیظ دار نیست. همچنین متقابل شد که گلابی چربی محصول نیز مستقیم از دمای هوای خشک‌کردن است. در مورد رنگ، نیز متقابل بین محصول خشک شده در دمای پایین هوای (حدود ۸۵ درجه سانتی‌گراد) دارای رنگ سبز و روشن تر نسبت به دمای ۵۰ درجه سانتی‌گراد بود.

واژه‌های کلیدی: گوگردگ، خشک‌کردن، چربی‌گردگ، گلابی چربی، خشک‌کردن خورشیدی، رنگ غلیظ

مقدمه
در صنعت مواد غذایی تام‌وکار، راه‌ها و روش‌های انتخاب محصولات غذایی یا ارسال غذای به انتخاب محصولات غذایی یا ارسال غذای به‌طور دراماتیک و حسی با زمینه دارد. خشک‌کردن یکی از گستردگینترین روش‌های مردم استفاده برای پژوهش‌های میوه و سبزی‌های است. خشک‌کردن، برای رسیدن به همیاری‌ها، خشک‌کردن یکی از ابزارهای مکریزی محصول را تضمین و تغییرات مختلف در محصولات غذایی، انتخاب محصولات غذایی، از هم‌بینی با عضویت سازمانی و انتخاب محصولات غذایی از هم‌بینی با عضویت سازمانی و

۱. به ترتیب، دانشجوی سابق کارشناسی ارشد، استاد، استادیار و استاد علوم و صنایع غذایی، دانشکده کشاورزی دانشگاه صنعتی اصفهان
۲. استادیار مکاتبات ملی‌های کشاورزی، دانشگاه کشاورزی دانشگاه صنعتی اصفهان
shahedim@cc.iut.ac.ir

* مسئولیت مکاتبات، پست الکترونیکی:
خارج گردان آب از ماده غلظتی را تأمین می‌کنند(۷). از نظر انواع مختلف منابع انرژی تجدیدپذیر، انرژی
خورشیدی از میان انرژی‌های بیشتری است. استفاده از یک نوع انرژی
زمانی بهتری به دست می‌آید که برای جهان زیست و جویی، یافته‌های تجدیدپذیری و مصالح آلودگی
باشد. در کشور ایران بیشتر از
روش‌های خشک‌کردن خورشیدی (آفتگذاری) سنتی استفاده
می‌شود، ولی مشکلات روش خشک‌کردن سنتی شامل افت
کمی، رشد میکروگلیسپس‌ها و ایجاد فاسد، حمله حشرات،
پرندگان و جوندگان، بارزش ناهنجاری‌های باران، شرایط جوی
نامطلوب و... است که موجب کاهش و کمیت کمی باشد.
با توجه به این مسئله، از روش‌های در حال
توسعه، خرد خشک‌کردن خشک‌کردن روش‌های کششی از اکتشافات مثبت و کاهش اثرات
بر ای جهت استفاده می‌کند (۸). لذا استفاده از انرژی
خورشیدی به‌صورت کنترل شده پیشرفت‌های خوبی به یابد. با
توجه به در دسترس بودن انرژی‌های خورشیدی در کشور
ما که در واقع برداشت اغلب محصولات کشاورزی که مشاهده
کرده‌ایم، تاکنون به میزان دارد و متمرکز نیستند. مسئله
روش‌هایی که در این اتفاق استفاده می‌کنند از
گونه‌ها، توجه به این مسئله از خشک‌کردن خشک‌کردن
مختل نیست، کتاب‌ها و انطباق‌پذیری برای محصولات
مختلف، باعث افزایش کمی و کیفی محصولات خشک
می‌شود (۸). به‌طور عمومی، خشک‌کردن خشک‌کردن
بر اساس نحوه جیران هوا به دو دسته طبیعی و
یرای طبیعی تقسیم می‌شود. در
خشک‌کردن خشک‌کردن، خشک‌کردن یکی استفاده از مکانیکی
برای جیران هوا با استفاده از مکانیکی دنده استفاده
برای می‌شود و اغلب این خشک‌کردن‌ها علاوه بر انرژی
خورشیدی از انرژی‌های اکتشافی دیگری مانند خورشیدی
در داخل خشک‌کردن ایجاد می‌شود (۶). این دو خشک‌کردن

دانه که موانع مذکور، با ایجاد اغتشاش در مسیر جریان هوای گرم، عامل بسیار مهمی در جهت بهبود کارایی کلکتور محصول می‌شوند ولی شکل، ابعاد جهت و موقعیت این موانع بطور قابل توجهی در کارایی کلکتور تأثیرگذار هستند (4).

زاویه و همکاران، با طراحی خشک‌کن خورشیدی از نوع فعال تلقیفی و استفاده از آن در خشک‌کردن شلوغ، نشان دادند که بی‌جریه هوا در خشک‌کن و فاصله زمانی تخلیه محصول، اثر معنی‌داری بر کاهش رطوبت شلوغ خروجی دارند (1).

فرآیند خشک‌کردن باعث ایجاد تغییراتی در بافت، عطر و طعم ارزش‌گذاری و رنگ محصول می‌شود که بررسی می‌باند این تغییرات و سعی در کاهش آن‌ها با استفاده از نکات قابل توجه در خشک‌کردن محصولات خشک‌آبی است. از بین موارد ذکر، محصولات خشک‌آبی عمداً توسط سی و چرودی، رنگ و چربی آب ارزیابی می‌شوند (7). یکی از مهم‌ترین تغییرات فیزیکی که طی خشک‌کردن موارد غذا نشان‌دهنده ایجاد می‌شود، کاهش حجم آن است. از دست دادن آب و کرم شدن باعث ایجاد تنش در ساختار سلولی مواد غذایی می‌گردد که نتیجه این حالت می‌باشد. تغییر برشک و کاهش ابعاد آن است. تغییر برشک و کاهش حجم در اثر موارد یک و چندگانه منفی در نظر مصرف کننده است (13). مواد غذایی خشک‌کن شده غلب قبل از مصرف در معرض جذب آب قرار می‌گیرند. سرعت و میزان جذب آب ممکن است به عنوان عاملی از کیفیت مواد غذایی خشک استفاده شود. مواد غذایی که تحت شرایط بهینه خشک استفاده می‌شوند، صدای کمتری متحمل شده و سریعتر و کاملاً جذب آب می‌کنند (11). خشک‌کردن، خصوصاً در سطح ماده غذایی را تغییر می‌دهد. در نتیجه قابلیت انعقاس نور و رنگ تغییر می‌کند. گرم و اکسیداسیون می‌تواند باعث ایجاد تغییرات شیمیایی در رنگ‌های مواد غذایی کاریوکلریک که می‌تواند میوه‌ها، منجمدان‌های طولانی‌تر و در جوهر میوه‌ها بالاتر خشک‌کردن، اثربخش‌تر رقابت‌ها را به‌مرور دارد (7).

گوجه فرنگی نیز مهندس غلب محصولات کشاورزی.
شکل ۱: شماتیک مقطع عرضی خشککن خورشیدی

پایین و بالای کلکتور قرار گرفته است و رابطی از جنس ورق گالوانیزه خروجی کلکتور را به قسمت ورودی در پایین محفظه خشککن وصل کرده است. که این رابط نیز دو جداره بوده و با پسماندهای خارجی، هواکشی با طول ۲۵ سانتی‌متر و به‌صورت یک مخروط ناقص قرار گرفته است و روی هواکش یک فن دوار به فضا ۲۵ سانتی‌متر وجود دارد که این فن توسط جریان‌های گاز در خروجی و به همراه دیگر عناصر به همراه جریان‌های گازی دیگر نزدیک به محفظه خشککن اضافه می‌شود. در داخل محفظه خشککن به‌وسیله سیستم کنترلی دیگری از جنس توری آلومینیومی که به‌صورت کشی در حاشیه بوده و به وسیله نوارهای لاستیکی در حاشیه به‌صورت کامپوزیتی گردیده است. داخل محفظه خشککن به‌وسیله ۵ عدد سیستم از جنس

پاپ و آماده سازی نمونه‌ها

کوچک‌ترین واریانس از موزه‌های در منطقه Early Urbana Y
روش‌های خشک‌کردن نمونه

۱. خشک‌کردن در آن زمان‌گذارشگاه
خشک‌کردن در دماهای ۵۰ و ۶۰ درجه سیلی‌بوس (در یک آن با مارک بایندر ساخت کشور آلمان) و در شرایط انگشت نیز در آن تهیه و رطوبت‌های گوجه‌فرنگی با ضخامت ۱ سانتی‌متر، به روز وی قطعه ورق آلومینیومی با ابعاد ۱۵۸۱۵ سانتی‌متر با وسیله خشک‌کردن و در زمان مشخص فراگیرهای آلومینیومی و ورقه‌های گوجه‌فرنگی اندادگیری و در یک فاصله منفی در آن قرار داده شد. پس از ازگذانش نمونه‌ها در آن، دمای مورد نظر در آن تنظیم شد. به روز وی قطعه ورق آلومینیومی مانکور برای ورق‌های خشک‌کردن انتخاب شد. غیر از این شده روش قسمت دیگر قسمت‌های یکنیز به‌وسیله فولی آلومینیومی پوشیده شد و ورقه‌های گوجه‌فرنگی روی آن قرار گرفتند که از آنها در فاصله زمانی بین آزمایش‌های کیفی نمونه‌برداری می‌شود و در کیسه‌های پلاستیکی دارای فلز قابل نفوذ به رطوبت تا زمان انجام آزمایش‌ها نگهداری شده‌اند.

۲. خشک‌کردن در فاصله زمانی مرداد، شهریور و مهر ماه ۱۳۸۵ و ورقه‌های گوجه‌فرنگی با ضخامت ۵/۰ و ۱۵ سانتی‌متر در ۵ قطعه

در فاصله زمانی مرداد، شهریور و مهر ماه ۱۳۸۵ و ورقه‌های گوجه‌فرنگی با ضخامت ۵/۰ و ۱۵ سانتی‌متر در ۵ قطعه...
آزمایش‌های طی و بعد از خشک‌کردن

۱. اندازه‌گیری کاهش رطوبت طی زمان خشک‌کردن

در روش خشک‌کردن با آون آزمایشگاهی بعد از قرار گرفتن نمونه‌ها در آون، در فواصل زمانی (0، ۱۵، ۳۰، ۶۰، ۹۰ و ۱۲۰ دقیقه) فول آلومینیم و نمونه‌های آن خارج و با دقت ۰/۰۱ گرم وزن گردیده و داده‌ها منتشر شد. این عمل تا رسیدن به رطوبت مشخص (۸/۰ بر اساس وزن خشک) ادامه پیدا کرد. در روش‌های خشک‌کردن با خشک‌کن خورشیدی و خشک‌کردن در معرض تور مستقیم خورشید نیز در فواصل زمانی (۵/۰، ۱۰، ۲۵، ۳۰، ۴۰ و ۵۰ دقیقه) ساعت و میلی‌نروهروی دو ساعت یک‌بار نواهد. رطوبت مشخص (۸/۰ بر اساس وزن خشک) نمونه‌ها با دقت ۰/۰۱ گرم توزین و داده‌ها منتشر شد.

۲. اندازه‌گیری ظرفیت جذب آب محصول طی زمان خشک‌کردن

از آزمایش‌های جذب آب روی نمونه‌های برداشتی طی زمان خشک‌کردن انجام گرفت و نمونه‌ها بعد از توزین در یک به ۱۵۰ میلی‌لیتر در ۱۵ میلی‌لیتر آب ۵۰ درجه سانتی‌گراد برای یک ساعت غوطه‌ور گردید. سپس نمونه‌ها از آپ و آورده شد و با لیزر اسپس از حذف آب سطحی با استفاده کاغذی، توزین شد و نهایتاً برای به‌دست آوردن ماهی خشک، نمونه‌های جذب آب که بر روی آلومینیوم متفاوت هستند و در آون خلاء تا رسیدن به وزن ثابت خشک گردید و بعداً توزین شد. با استفاده از روابط زیر به ترتیب ظرفیت جذب آب یا (Water Absorption) WAC یا (Dry matter) DHC، ظرفیت حفظ ماهی خشک یا (Capacity Rehydration) RA یا و توانایی جذب آپ (Ability) محاسبه شد (۱۷).

۳. اندازه‌گیری حرکتی محسول طی زمان خشک‌کردن

تغییرات حجم ناشی از حرکتی محسول به صورت یابا (آب) بینش مشاهده شد. این نمونه ورده یک‌بار زنده روز در دو ساعت و پیکنومتر با آب کاملاً پر شد و پس از خشک‌کردن جاده آن، توزین گردید و با استفاده از روابط زیر حجم نمونه و حرکتی محسوس آن محاسبه شد (۱۷).

\[
WAC = \frac{M_w (100 - S_c) - M_d (100 - S_d)}{M_w (100 - S_c)}
\]

\[
DHC = \frac{M_w S_c - M_d S_d}{M_w S_c}
\]

\[
RA = \frac{WAC \times DHC}{M_w}
\]

که در آن: \(V\) حجم در زمان مورد نظر، \(V_i\) حجم اولیه نمونه است.

برای انکه مقایسه بین حجم‌ها در زمان صفر و ۱ صبح باشد، با نصف \(V_i\) ورآ ماهی خشک محاسبه شود.
سیره و بوسیله مسکن‌های هاترلی (دیتاسکریبت شرکت تکست فلش آمریکا) شاخص‌های h, b, a, L رنگ ان، انتخاب گری شد.

طرح آماری مورد استفاده و روش آنالیز تابی

در این تحقیق، آزمایش‌های ان در قالب کامل تصادفی در چهار تیمار و به تغییر و در شرایط خوشه‌ی بحوری در قالب کامل تصادفی در چهار تیمار و چهار تکار انجام شد. تجزیه و ارایه‌ی و رگرسیون در قالب تجزیه کووارانس با استفاده از نرم‌افزار SAS و MSTATC در بازه‌ی انجام شد.

نتایج و بحث

- مثابه‌ی خشک‌کردن در آن آزمایش‌گاهی

- مثابه‌ی خشک‌کردن در آن آزمایش‌گاهی

پس از این که مطابق این آزمایش‌های گزارشی به خشک‌کردن و روش‌های خوشه‌ی بحوری در دهابی‌های 50, 50 و 80 درجه سانتی‌گراد تا رسیدن به رطوبت 7 درصد، زمان خشک‌کردن درخشک در نسبت به خشک‌کردن است. در میزان

سرعت خشک شدن خوشه‌ی بحوری و روش‌های خوشه‌ی بحوری، بهصورت مقدار رطوبت مطلق حذف شده در واحد زمان بهعنوان تابعی از زمان خشک‌کردن در شکل 3 نشان داده شده است. در این شکل مشخص می‌شود که در مثابه‌ی خشک‌کردن خوشه‌ی بحوری روش‌های خوشه‌ی بحوری، یک دوره سرعت ثابت و دو دوره سرعت نزولی وجود دارد. در این زمان خشک‌کردن در شکل 3 نشان داده شده است. ملاحظه می‌شود که در منحنی

سرعت نزولی و وجود دارد و خشک‌کردن مرطوب از شرایط خشک‌کردن غالباً در مرحله سرعت نزولی اتفاق می‌افتد. همچنین مشاهده می‌شود که با افزایش دمای خشک‌کردن، شدت افزایش می‌یابد.

سرعت نزولی افزایش می‌یابد.

\[\text{شده به بوسیله مسکن‌های هاترلی (دیتاسکریبت شرکت تکست فلش آمریکا) شاخص‌های h, b, a, L رنگ ان، انتخاب گری شد.} \]

\[\text{طرح آماری مورد استفاده و روش آنالیز تابی} \]

\[\text{در این تحقیق، آزمایش‌های ان در قالب کامل تصادفی در چهار تیمار و به تغییر و در شرایط خوشه‌ی بحوری در قالب کامل تصادفی در چهار تیمار و چهار تکار انجام شد. تجزیه و ارایه‌ی و رگرسیون در قالب تجزیه کووارانس با استفاده از نرم‌افزار SAS و MSTATC در بازه‌ی انجام شد.}

\[\text{نتایج و بحث} \]

\[\text{مثابه‌ی خشک‌کردن در آن آزمایش‌گاهی} \]

\[\text{مثابه‌ی خشک‌کردن در آن آزمایش‌گاهی} \]

\[\text{پس از این که مطابق این آزمایش‌های گزارشی به خشک‌کردن و روش‌های خوشه‌ی بحوری در دهابی‌های 50, 50 و 80 درجه سانتی‌گراد تا رسیدن به رطوبت 7 درصد، زمان خشک‌کردن درخشک در نسبت به خشک‌کردن است. در میزان

\[\text{سرعت خشک شدن خوشه‌ی بحوری و روش‌های خوشه‌ی بحوری، بهصورت مقدار رطوبت مطلق حذف شده در واحد زمان بهعنوان تابعی از زمان خشک‌کردن در شکل 3 نشان داده شده است. در این شکل مشخص می‌شود که در مثابه‌ی خشک‌کردن خوشه‌ی بحوری روش‌های خوشه‌ی بحوری، یک دوره سرعت ثابت و دو دوره سرعت نزولی وجود دارد. در این زمان خشک‌کردن در شکل 3 نشان داده شده است. ملاحظه می‌شود که در منحنی

\[\text{سرعت نزولی و وجود دارد و خشک‌کردن مرطوب از شرایط خشک‌کردن غالباً در مرحله سرعت نزولی اتفاق می‌افتد. همچنین مشاهده می‌شود که با افزایش دمای خشک‌کردن، شدت افزایش می‌یابد.}

\[\text{سرعت نزولی افزایش می‌یابد.} \]
شکل ۲. سیستمی افت رطوبت ورتهای گوجه فرنگی با ضخامت ۱ سانتی‌متر در دماهای مختلف خشک کردن با آون (نسبت رطوبت تابعی از زمان)

شکل ۳. شدت افت رطوبت ورتهای گوجه فرنگی با ضخامت ۱ سانتی‌متر در دماهای مختلف خشک کردن با آون (تابعی از زمان)

شکل ۴. شدت افت رطوبت ورتهای گوجه فرنگی با ضخامت ۱ سانتی‌متر در دماهای مختلف خشک کردن با آون (تابعی از رطوبت مطلق)
سیستم افت رطوبت و مقاومت کلیت ورقه‌هاي گوجه‌فرنگی در مرحله خشکشدن

شکل ۵: سیستم افت رطوبت ورقه‌هاي گوجه‌فرنگی در سه ضخامت و در روش خشک‌کردن خوش‌شیدی

(نسبت رطوبت نسبی از زمان)

شکل ۶: شدت افت رطوبت ورقه‌هاي گوجه‌فرنگی با ضخامت ۱ سانتی‌متر و تغییرات دماي هوا در دو روش خشک‌کردن خوش‌شیدی

وجود یک دوره سرعت نزولی را نشان داده (۱۵).

- برسی چروک‌چیدن طی زمان خشک‌کردن
- چروک‌چیدن ورقه‌هاي گوجه‌فرنگی در اون تغییرات چروک‌چیدن ورقه‌هاي گوجه‌فرنگی در دماهای مختلف

۴۵۳
شکل 8. نتایج درصد جروری‌کنگر و رفع‌های گوجه‌فرنگی با ضخامت 1 سانتی‌متر در داماهای مختلف خشک‌کردن (نامی از رطوبت)

شکل 9. نتایج درصد جروری‌کنگر و رفع‌های گوجه‌فرنگی با ضخامت 1 سانتی‌متر در داماهای مختلف خشک‌کردن (نامی از زمان)

رشد و تغییرات جروری‌کنگر به عنوان تابعی از رطوبت رسیده و در نتیجه اثر رطوبت در هر نوع حذف ضخامت این جروری‌کنگر مشخص می‌شود که در رطوبت یکسان، دمای هوا بر جروری‌کنگر و رفع‌های گوجه‌فرنگی بی‌تأثیر است. نتایج آنالیز واریانس نشان داد که با هفتم اثر رطوبت، باعث تأخیر عامل دمای هوا بر جروری‌کنگر در سطح احتمال 99 درصد می‌شود (جدول 1).

جروری‌کنگر و رفع‌های گوجه‌فرنگی در یک خشک‌کن خورشیدی و در روش سنتی

بررسی تغییرات جروری‌کنگر محصول به عنوان تابعی از رطوبت در داماهای مختلف ضخامت متنوع و رفع‌های گوجه‌فرنگی مشخص شد که این عامل بر جروری‌کنگر محصول به تأثیر نسبتی به دلیل اینکه نمودارها مربوط به مشاهدات دوره‌ای 8 می‌باشند. البته از تاکید آنها خودداری گردید. در جدول 2، 1 نتیجه تأثیر دمای و تأثیر روش خشک‌کردن و ضخامت وردها و همچنین اثر مقابل آنها بر جروری‌کنگر و رفع‌های رسمی 1 درصد معیار دانسته شد. این نتایج مشابه رسیدند و نشان دادند که تأثیر درجه حرارت هوا

252
جدول ۱. تابع تجزیه واریانس اثر دمای هوا بر جرودیگی ورقه‌های گوجه‌فرنگی با ضخامت ۱ سانتی‌متر
در سطح احتمال ۱ درصد (بعد از حذف اثر رطوبت)

<table>
<thead>
<tr>
<th>F</th>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>میانگین مربعات</th>
<th>دمای هوا</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۹۸</td>
<td>ضخامت</td>
<td>۲</td>
<td>۱۲/۲۱</td>
<td>۳</td>
</tr>
<tr>
<td></td>
<td>خطا</td>
<td>۱/۲۶۴</td>
<td>۰/۸۴</td>
<td></td>
</tr>
</tbody>
</table>

جدول ۲. نتایج تجزیه واریانس اثر ضخامت ورقه‌های گوجه‌فرنگی و روش خشک‌کردن بر جرودیگی محصول
در سطح احتمال ۱ درصد (بعد از حذف اثر رطوبت)

<table>
<thead>
<tr>
<th>F</th>
<th>منابع تغییرات</th>
<th>درجه آزادی</th>
<th>میانگین مربعات</th>
<th>ضخامت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۵۵</td>
<td>ضخامت</td>
<td>۲</td>
<td>۱۳/۲۱</td>
<td>۱</td>
</tr>
<tr>
<td>۰/۸۴</td>
<td>روش خشک‌کردن</td>
<td>۱</td>
<td>۹/۶۱</td>
<td>۴/۷۲</td>
</tr>
<tr>
<td>۰/۵۲</td>
<td>ضخامت</td>
<td>۲</td>
<td>۱۲/۶۳</td>
<td>۹/۱۲</td>
</tr>
</tbody>
</table>

شکل ۹. تغییرات قابلیت جذب آب ورقه‌های گوجه‌فرنگی با ضخامت ۱ سانتی‌متر طی خشک‌کردن به‌عنوان تابعی از رطوبت (در دمای‌های مختلف هوا)

مقدار اوره‌های گوجه‌فرنگی در سطح احتمال ۱ درصد مقادیر در دماهای مختلف به هم تبدیل می‌شوند.
برای بررسی آماری اثر دماهای مختلف بر جذب آب ورقه‌های گوجه‌فرنگی طی خشک‌کردن تجزیه واریانس صورت گرفت. به این منظور ابتدا اثر رطوبت حذف شد و سپس اثر دما بر RA و DHC WAC و تجزیه واریانس گردید.
جدول ۳ نشان می‌دهد که اثر دمای هوای خشک‌کن بر

۴۵۵
جدول ۳. نتایج تجزیه و ارتباط اثر دمای هوا روی شاخص‌های WAC، DHC و RA

<table>
<thead>
<tr>
<th>F</th>
<th>درجه آزادی</th>
<th>WAC</th>
<th>DHC</th>
<th>RA</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۱۵</td>
<td>۰/۶۲</td>
<td>۶۲</td>
<td>۶۲</td>
<td>۶۲</td>
</tr>
<tr>
<td>۱/۱۵</td>
<td>۰/۵۴</td>
<td>۵۴</td>
<td>۵۴</td>
<td>۵۴</td>
</tr>
<tr>
<td>۱/۱۵</td>
<td>۰/۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
<td>۴۶</td>
</tr>
</tbody>
</table>

جدول ۴. نتایج تجزیه و ارتباط اثر دمای هوا روی شاخص‌های L، a و b

<table>
<thead>
<tr>
<th>F</th>
<th>درجه آزادی</th>
<th>L</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲۸/۱</td>
<td>۰/۶۷</td>
<td>۶۷</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>۳۶/۸</td>
<td>۰/۶۶</td>
<td>۶۶</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>۱/۳</td>
<td>۰/۳۵</td>
<td>۳۵</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>۱/۴۷</td>
<td>۰/۴۸</td>
<td>۴۸</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>۲۸/۱</td>
<td>۰/۷۵</td>
<td>۷۵</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>۱/۹</td>
<td>۰/۶۱</td>
<td>۶۱</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>۲۸/۱</td>
<td>۰/۷۷</td>
<td>۷۷</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>۱/۹</td>
<td>۰/۶۷</td>
<td>۶۷</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>

خشک‌کردن، واکنش‌های ایزوپریاسیون و تخریب لیکوین
افراش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که سپس به‌عنوان (۱۰) واکنش می‌باید و شاخص‌های نازه‌ای که تاکنون، مشخص نشده است.

- شاخص‌های و مراد، نشان داد که افزایش دمای در شرایط مختلف خشک‌کردن، واکنش‌های ایزوپریاسیون و تخریب لیکوین
جدول 5. مقایسه میانگین شاخص‌های رنگ و رفتارهای گوجه فرنگی خشک شده با ضخامت ۱ سانتی‌متر در دمای‌های مختلف هوا توسط آزمون دانکن در سطح احتمال ۱ درصد

<table>
<thead>
<tr>
<th>فاصله غلاف</th>
<th>دمای هوای آرون (C)</th>
<th>a</th>
<th>b</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۰۸۸</td>
<td>۵۰</td>
<td>۴</td>
<td>۴</td>
<td>۱</td>
</tr>
<tr>
<td>۱/۰۸۹</td>
<td>۶۰</td>
<td>۴</td>
<td>۴</td>
<td>۱</td>
</tr>
<tr>
<td>۱/۰۸۱</td>
<td>۷۰</td>
<td>۴</td>
<td>۴</td>
<td>۱</td>
</tr>
<tr>
<td>۱/۰۸۲</td>
<td>۸۰</td>
<td>۴</td>
<td>۴</td>
<td>۱</td>
</tr>
</tbody>
</table>

جدول 6. نتایج تجزیه واریانس اثر روش خشک کردن خشک‌کن خورشیدی روی شاخص‌های رنگ و رفتارهای گوجه فرنگی با ضخامت ۱ سانتی‌متر خشک‌شده

<table>
<thead>
<tr>
<th>روش خشک کردن</th>
<th>ضخامت</th>
<th>b</th>
<th>a</th>
<th>L</th>
<th>نتیجه‌گیری</th>
</tr>
</thead>
<tbody>
<tr>
<td>۲/۰۹</td>
<td>۵/۰۷</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>دیگر گوجه فرنگی خشک‌شده به‌روش سنتی دارای رنگ قرمز‌تری نسبت به خشک‌کن خورشیدی است و احتمالاً لیکوینی آن پیش‌تر حفظ شده است.</td>
</tr>
<tr>
<td>۲/۰۹</td>
<td>۵/۰۷</td>
<td>۱</td>
<td>۱</td>
<td>۱</td>
<td>سابلیک و همگران، در مقایسه خشک‌کن خورشیدی</td>
</tr>
</tbody>
</table>
چندونه مقاله‌های شناخته‌شده رنگ و رنگ‌های غیر فنگی با ضخامت ۱ سانتی‌متر خشک‌شده در دو روش خشک کردن

<table>
<thead>
<tr>
<th>a/b</th>
<th>h</th>
<th>b</th>
<th>L</th>
<th>روشن</th>
<th>خشک‌کن خورشیدی</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>24/3</td>
<td>29/7</td>
<td>4/6/6</td>
<td>25/5</td>
<td>57/6</td>
</tr>
<tr>
<td>0.4</td>
<td>24/3</td>
<td>29/7</td>
<td>4/6/6</td>
<td>28/8</td>
<td>50/4</td>
</tr>
</tbody>
</table>

مشاهده گردید، با خشک کردن و رنگ‌های غیر فنگی در یک دمای بالای هوا (۵ درجه سانتی‌گراد)، دارای رنگ قرمز و روشن تر نسبت به دمای ۸ درجه سانتی‌گراد بود.

سیاست‌گزار

به منظور انجام ایین تحقیق و ساخت دستگاه خشک‌کن خورشیدی مورد نظر، از شرکت پالار اصفهان کمک گرفته شد. لذا بُنی و سیله از همکاری و مساعدت آقای مهندس سکوت (مدیر عام شرکت سولارپلاز)؛ آقای مهندس شهراف و سایر بررسی شرکت پالار که در ساخت خشک‌کن مذکور متحمل از جملات درون‌آمده‌های تشکر و قدردانی می‌گردد.

منابع مورد استفاده

1. زارع، د. ع. زمربیان و ح. قاسم خانی. ۱۳۸۴. تأثیر دب جرمی هوا و رود سایبان خشک‌کن بر روند کاهش رطوبت شلوک در یک خشک‌کن نیمه پوسته خورشیدی. علوم و فنون کشاورزی و منابع طبیعی ۱۹: ۱۲۱-۲۴۶.
2. سهیل میردراز، ع. و ع. کیهانی. ۱۳۸۵. طراحی خشک‌کن خورشیدی با همرفت‌های براقی برای سیب‌های برگی و ارزیابی عملکرد جمع‌کنندگان انرژی خورشیدی. تحقیقات مهندسی کشاورزی ۷/۲: ۱۴۷-۲۰۰.
3. صادقی، ح. ۱۳۸۴. اثر دمای و رطوبت هوا بر روی سیبک‌های خشک‌کردن و رنگ‌های سیبک‌های خشک‌کردن. پایان‌نامه کارشناسی ارشد صنایع غذایی، دانشکده کشاورزی، دانشگاه تربیت معلم.